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Abstract

Physical knot theory is an area of study in the field of knot theory which seeks to create physical frame-
works with which to study knots. One of the most well known models is the ropelength model for knots and
links. The ropelength model of a knot or link seeks to model presentations of knots or links that are made
of an ideally flexible, thickened rope and to define a tight presentation of a knot or link. It was established
by J.W. Alexander in 1923 that every knot or link can be represented as the closure of a braid [1]. With this,
we are inspired to extend the ropelength model to braids. In this paper we define a ropelength model for
braids and prove the existence of a ropelength minimizing braid presentation within each braid type.
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2 Introduction

"Can you tie a knot on a foot long rope that is one inch thick?" This has been a long standing question
in knot theory. The question was answered negatively in [4] by employing the ropelength model of a knot.
[3, 6, 7] developed the ropelength model for knots and links prior to this as a way to mathematically model
knots that are made out of a thickened, ideally flexible rope and measure how tightly tied a given knot or
link in this model can be tied.
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One of the first observations to make about knots and links that are made out of a real rope is that there
is a limit to how tightly one can tie the knot or link. This is, of course, due to the thickness of the rope.
It is only natural that the ropelength model for knots and links also models this sort of limiting behavior.
Before this limiting behavior can be rigorously defined, however, one must first give a reasonable account
of the thickness of a given knot or link. Intuitively, a person would buy a length of rope that has a given
thickness, then tightly tie the knot out of this length of rope. This is a very natural and valid approach to
solving this problem. However from a mathematical perspective, it makes sense to first construct a specific
presentation of a knot or link out of a curve (or disjoint union of curves) of zero thickness, then place a
normal tube(s) around the presentation whose core is the original curve (or disjoint union of curves). Given
this approach, we have to be careful to not make our normal tube too large, else it will intersect its own
interior. The interiors of the normal tube should not self-intersect because real world rope does not do this.
We note, however, that self-intersection of the normal tube is allowed if it is only along the boundary of the
normal tube i.e the outermost tube, since this behavior occurs in knots tied out of physical rope.

[6] gave a useful account of this maximal thickness for a given knot (or link) presentation by employing
the global radius of curvature. The global radius of curvature for a presentation of a knot or link is a functional
that provides a nice theoretical framework to work with the thickness of curves. The global radius of cur-
vature takes advantage of the fact that for three distinct, non-collinear points x, y, z ∈ R3, there is a unique
circle that passes through the three points–we call the radius of this circle r(x, y, z). The global radius of
curvature of a knot or link is defined locally by first fixing a point on x the knot (or link) presentation and
taking the infimum over all y and z (with y 6= z) on the knot presentation of r(x, y, z). Then the global
radius of curvature is defined as the infimum of all x over the local radius of curvature.

Both [6] and [3] showed that the global radius of curvature corresponds to the maximal radius of thick-
ness for an embedded open normal tube around the given knot or link presentation. Using this charac-
terization of thickness is advantageous because it allows for control over the thickness in terms of local
curvature and distance between strands of the knot at the same time. In addition, this functional is upper
semicontinuous, which allows us to have better control over convergence properties which we will address
momentarily.

Now with a working account of the maximal thickness of an embedded normal tube, [6, 3] define a
notion of how "tight" a knot (or link) presentation is through the ropelength, which is defined as follows: Let
L ⊂ R3 be a parameterized presentation of a knot or link. We define the ropelength of L to be

Rl(L) := `(L)/∆[L],

where `(K) is the total length of L and ∆[L] is the maximimal thickness of L. The smaller the ropelength,
the tighter the presentation is tied. This makes sense with our intuitive notion of tightness since the rope-
length of L would be smallest when the total length of rope used to make L is smallest and the thickness of
L is largest. This would mean that L is made out of the smallest amount of rope and that there is very little
space between the strands once they are thickened.

Using this definition of tightness, [3, 6] then frame the question of existence of ideal knot presentations as
"For any knot (or link) type, does there exist a presentation L∗ such that RL(L∗) is minimal?" This question
itself can actually be rephrased as follows: "For each knot (or link) type, does there exist a presentation
L∗ ∈ L such that

Rl(L∗) = inf
L∈L

Rl(L),

where L is the isotopy class of a given knot (or link) type?"

In [7], this is proved for C1,1 (once differentiable with Lipschitz derivative) presentations of knots. In
[3], a more general result is proved for C1,1 presentations of links and several classes of such ropelength
minimizing presentations is constructed. This also shows that such presentations are not unique in general.
For the purposes of this paper, we are interested in how these existence results were achieved. Since the
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process was essentially the same in both papers, the next paragraph will solely refer to the process for prov-
ing the existence of ropelength minimizers in [3] since it allowed for the existence of ropelength minimizing
link types as well.

In [3], Cantarella et al. first showed that the thickness functional (obtained by employing the global
radius of curvature) was upper semicontinuous. Then it was shown that for a given presentation of a link L
with thickness τ > 0, L is C1,1 with Lipschitz constant 1/2τ . After which, there was a lemma proven which
stated that if one takes a sequence of links Li with thickness τ > 0 which converge to a limiting link L (in
the C0 norm), then Li → L in the C1 norm and L is isotopic to (all but finitely many) of the Li. It should
also be noted that by application of the upper-semicontinuity of thickness, L also has thickness of at least τ .
Then using these results, the existence result was proven as follows: Consider the compact space of all C1,1

curves with length uniformly bounded by 1. Then, one can consider a sequence of Li which maximizes
thickness over the isotopy class L. Using the uniform boundedness of the lengths and the fact that each Li

is uniformly Lipschitz, one can extract a uniformly convergent subsequence Lik → L∗ by employing the
Arzelà-Ascoli Theorem. By the previously stated lemma L∗ is isotopic to (all but finitely many) of the Lik

and must also have thickness equal to the supremal thickness (since thickness is upper semicontinuous).
Then L∗ is, of course, a ropelength minimizer.

In this paper, we define a similar ropelength model for braids. We will be using the same notion of thick-
ness for braids as was used in [3, 6, 7]. In addition, we will be using the same notion of ropelength for braid
presentations as was used for links (i.e total length used in all strands divided by maximum thickness). The
reason ropelength corresponds to tightness for braids would be the same as why it corresponds for links.
We will also be considering a thickness maximizing sequence of braid presentations (for a given braid type)
and employing the Arzelà-Ascoli theorem to extract a convergent subsequence, which will show the ex-
istence of ropelength minimzing braid presentations. There is however, a slight difference in our method
for proving the existence of ropelength minimizing braid presentations and what was used in [3, 6, 7]. The
difference arises from a certain subtlety that comes from dealing with braid presentations. This subtlety
arises when we have to work with the endpoints of a braid presentation. When working with the typical
definition of a braid, two braid presentations can have different endpoints but still be equivalent. This
leads to a somewhat problematic viewpoint when we are treating our braid presentations as parameterized
curves sitting in R3. This is because equivalence classes of braid presentations with arbitrary endpoints
makes for an infinite maximal thickness since we can just keep considering braids whose endpoints are
arbitrarily far apart; a problem that is not experienced by nontrivial presentations of knots or links. At first,
one would think the solution to this endpoint problem would be to merely fix endpoints so that they are all
evenly spaced in a line and a certain vertical distance apart. However, this is not a very natural definition
to consider, because when we make braids out of physical rope and pull them as tight as we can, we have
that the endpoints of the braid do not necessarily form a straight line as we can see pictured:

Figure 1: We can see that the perpendicularity of the endpoints and the "flat" behavior of the endpoints
being stuck in a row is obviously not ideal.

As such, we are not capturing the maximally tightened behavior of the braid. We believe that the fix
for this issue is to do the following: choose the endpoints in any suitable way, maximize thickness over all
such presentations of the braid with the same endpoints, then compose this maximized presentation with
itself. After which, tighten this composed braid maximally and consider the minimal ropelength of this
new braid divided by 2. Next, compose this maximally tightened composed braid with itself to obtain a
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new braid and consider this new ropelength divded by 3. Repeat this process indefinitely. We will then
define the minimal ropelength of an element of the braid group to be the sequence of minimal ropelengths
of the composed braids, divided by the number of compositions. The geometric intuition behind this deci-
sion is that when we compose the braid (that has fixed endpoints) with itself after an arbitrary number of
times, the actual ideal presentation of the braid–as we would see from making it out of rope–is somewhere
within this maximally tightened composition; then all we need to do is cut out this ideal presentation. This
process of arbitrary composition would, intuitively, allow us to "forget the endpoints" that we have chosen.

With this strategy in mind, we spend sections 3 and 4 of this paper laying out the necessary definitions
and results for a ropelength model of braid presentations with fixed endpoints. In the fifth section we lay
out our more general process for finding ropelength minimizers in greater detail.

3 Preliminary Definitions

Definition 3.1 (Braid Frame). Let C2 be a collection of n equally spaced points on the x-axis in R3. Now let
C1 = C2 + {(0, 0, b)} be the Minkowski sum and b ∈ R such that b > 0. We call the collection

F = {C1, C2}

a braid frame.

We give an example of a braid frame.

Example 1. Let C1 = {(1/3, 0, 0), (2/3, 0, 0), (1, 0, 0)} and take C2 = {(1/3, 0, 1), (2/3, 0, 1), (1, 0, 1)}. Then
we let F = {C1, C2} and we can picture F as follows:

Figure 2: The bottom row of purple points depict the set C1 and the top row of purple points depict the set
C2. Together, they make the frame F = {C1, C2}.

Definition 3.2 (braid strand, endpoints, and braid presentation). Let F = {C1, C2} be a braid frame and let
γ : [0, 1] → R3 be a smooth (Ck) curve that is (weakly) monotonic in z such that γ(a) ∈ C1 and γ(b) ∈ C2

where γ is perpendicular to the line containing γ(a) and γ(b). We call γ a braid strand and γ(a) and γ(b) the
endpoints of γ.

If for a given frame F , we have a collection, S, of n-braid strands γi : [0, 1] → R3 (i ∈ {1, ..., n}) such
that γi(t) 6= γj(s) for all t ∈ [0, 1] and s ∈ [0, 1] and i 6= j, then we call the structure B = (F, S) a framed
presentation of an n-braid or a framed braid presentation.

Example 2. It would be rather cumbersome to give explicit parameterizations of a disjoint union of smooth
strands which form a framed braid presentation as we have defined, so we present this example using a
picture:
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Figure 3: With the red, green, and blue curves, we note that each of them is drawn to be perpendicular to
the endpoints. Taken along with F from the previous example we have a framed braid presentation.

We note that we can have two different framed braid presentations which contain all of the same cross-
ing information such that one presentation can be continuously deformed into the other within the ambient
space of R3. Since the two framed presentations carry all of the same "relevant" information, we define an
equivalence on braid presentations.

Definition 3.3 (equivalence of framed braid presentations). Let F be a braid frame and let B0 = (F, S0)
and B1 = (F, S1) be braid presentations. We say B0 is equivalent to B1, denoted B0 ' B1, if there exist n
ambient isotopies

Hi : [0, 1]× [0, 1]→ R3

relative to the respective endpoints of the i-th strands where, after a suitable change of coordinates for each
αi ∈ S0, there is a βi ∈ S1 such that Hi(s, 0) = αi(s), Hi(s, 1) = βi(s) and the collection St = {Hi(s, t) : s ∈
[0, 1]}ni=1 forms a framed braid presentation Bt = (F, St) for all t ∈ [0, 1].

Example 3. We convey this example of equivalence pictorially:

Figure 4: Starting with the framed braid presentation on the far left, we can obtain the framed braid pre-
sentation on the far right as depicted by the middle picture. In the middle picture we are continuously
pushing the blue strand outward while also continuously pushing the red strand and green strand until
they are straight.
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Definition 3.4. Let F = {C2, C1 = C2 + {(0, 0, b)}} (for some b > 0) be a braid frame. We label the points of
C1 and C2 from left-to-right by 1, ..., n. Let B1 = (F, S1) and B2 = (F, S2) be two braid presentations. We
define the composition of a braid presentation of B1 and B2, denoted B1 ∗B2, in the following manner:

Let αi : [0, 1] → R3 be the i-th strand of B1. By the i-th strand of B1 we mean that αi(0) is the i-th
points of C1. We note that αi(1) is the j-th point of C2. Let βj : [0, 1] → R3 be the j-th strand of B2.
We reparametrize αi and βj so that they are defined on [0, 1/2] and [1/2, 1] respectively (while keeping both
strands smooth (Ck)) and we rename the reparametrizations as αi and βj . In addition, we translate αi along
the z-axis by (0, 0, b) (and again name the resulting curve αi). Now we construct the curve γi : [0, 1] → R3

defined by {
αi(t), t ∈ [0, 1/2]

βj(t), t ∈ [1/2, 1]

(where γi is smooth (Ck)). We then consider the frame

F ∗ = {C2, C2 + {(0, 0, 2b)}} and the collection S∗ = {γi}ni=1.

We then define B1 ∗B2 as
B1 ∗B2 := (F ∗, S∗).

Example 4. We convey this example of braid composition pictorially:

Figure 5: Here we have composed our framed braid presentation (from the previous examples) with itself.
Note that where each strand on the top presentation ends is where the bottom presentation begins. This
continuation of strands from the first presentation to the second must be carried out in a smooth manner.
Note that the resulting composed braid has a different frame than its two component braid presentations.
Lastly, we note that in this example since we are composing two braid presentations within the same isotopy
class, the order of the composition does not matter. However, in general the composition operation is not
commutative.

We can easily observe that since all our γi in the above definition were smooth, and the strands αi and
βi were monotonic, had endpoints in the frame, and met the frame perpendicularly, that each γi is a braid
strand of B1 ∗B2.

Now we turn our attention towards developing a ropelength model for our framed braid presentations.
In order to define a maximum thickness for a given framed presentation, we require the following geometric
notion also used in [6]. For any three non-collinear points x, y, z ∈ R3, there is a unique circle sitting
in R3 containing x, y, and z. We denote the radius of this circle by r(x, y, z). As in [6], we can actually
continuously extend r(x, y, z) if it is defined on a smooth (Ck) curve. We recount this construction here: Let
γ : [a, b] → R3 be a simple, smooth (Ck) such that x = γ(t), y = γ(s), and z = γ(u) for some t, s, u ∈ [a, b].
Then define

r(x, y, y) := lim
u→s

r(x, y, z).
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We can define other such extensions of r (such as r(x, x, y) or r(x, z, z)) similarly. As a note, we can also
consider cases such as

r(x, x, x) := lim
s,u→t

r(x, y, z),

and we note that r(x, x, x) is actually the radius of curvature for the curve. Now we can give our definition
of maximal thickness for a framed braid presentation.

Definition 3.5. Let B = (F, S) be a framed braid presentation. We define the maximum thickness for a framed
braid presentation, ∆[B], in terms of the local thickness ∆x(B) where x is a point on any strand, γi and

∆x(B) := inf
y,z∈S

r(x, y, z) and ∆[B] := inf
x∈S

∆x(B).

As a sanity check, we would like to show that this definition corresponds to a maximum thickness for
a given framed braid presentation. Using [3, 6], we know that for any C1 presentation of a link L, the
maximal thickness defined from the global radius of curvature is equal to the normal injectivity radius (i.e
the largest radius of an injective tube composed of open disks normal to the curve centered on the curve).
Let B = (F, S) be a framed braid presentation, where ∆[B] = τ > 0. We smoothly close the braid into
a presentation of a link, L, in such a manner where ∆[L] = τ , and immediately apply the result from
[3] to know that the the functional, ∆, corresponds to the thickness of the link. Since ∆[B] = τ was not
changed by closing up our braid, we conclude that the global radius of curvature defined over a framed
braid presentation corresponds to the maximal thickness of the presentation.

Now that we have a notion of maximum thickness for a given framed presentation of a braid, we would
like to numerically quantify just how tightly wound a given framed presentation is. For this, we turn to
[3, 6, 7]. These papers describe the ropelength model for a given presentation of a knot (or link). The
ropelength of a presentation of a knot or link is the total length of the strands divided by the maximimum
thickness of the presentation. We now define the corresponding version of ropelength for a framed braid
presentation as follows:

Definition 3.6. Let F be a braid frame with B = (F, S) a framed braid presentation. In addition, let ∆[B]
be the maximum thickness of B, and let `(B) be the sum of the lengths of all strands of B. The ropelength of
B is defined as

Rl(B) := `(B)/∆[B].

We now direct our attention to the following situation: in the real world, when we buy rope of a given
thickness and length, it is obvious that for a given braid we can make a tightest version of that braid out of
rope (given that we have enough rope). In order to have a somewhat physically accurate model for braids,
we would like our model to allow us to have presentations of braids that can be maximally tightened for
every framed braid type. So we seek to answer the following question: "For every (framed) braid type, does
there exist a tightest (framed) braid presentation?" Of course, using our new definitions we can rephrase the
question as follows: "For every (framed) isotopy class, BF , does there exist a (framed) braid presentation
B∗ ∈ B such that

inf
B∈B

Rl(B) = Rl(B∗)?”

If such a B∗ exists, we call it the ropelength minimizer of BF . We note that we can alternatively denote the
ropelength minimizer for a given isotopy class for a framed presentation as Rl(BF )

In order to prove that there exist ropelength minimizers for framed presentations, we are going to have
to consider sequences of framed braid presentations. We give a definition of a sequence of framed braid
presentations and what it means for a sequence of braid presentations to converge.

Definition 3.7. Let F be a frame and for each i ∈ {1, ..., n} let {γim}ni=1 be a sequence of curves such that the
disjoint union Sn = {γim}ni=1 forms a framed braid presentation

Bm = (F, Sm)

for each m ∈ N. We call Bm a sequence of framed braid presentations. If each γim converges (uniformly) to a
curve γi∗, then we we say Bm converges (uniformly) to B = (F, S∗) where S∗ = {γi∗}ni=1 and we express this
as Bm → B.
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It is important to note that if we have a convergent sequence of framed braid presentationsBm → B, the
limiting framed collection of curves B need not necessarily be a framed braid presentation. This is because
we can have a sequence in which the braid strands are never touching but converge to two braid strands
which do intersect, thereby making the collection to which it converges not a framed braid presentation.
However we actually have great control over the convergence if we consider sequences of framed braids,
Bm that have thickness ∆[Bm] ≥ τ > 0 for allm. Then the collection of framed curves to which it converges
must be a braid presentation. We prove this fact later in section 4.

4 Basic Results

Our goal is to show that for every framed isotopy class of a braid, there is a ropelength minimizing framed
presentation. In order to show this, we need to take some detours.

Lemma 5. Let BF be a framed isotopy class of a braid. Then

∆[BF ] := sup
B∈BF

∆[B]

exists and is finite.

Proof. Since our frame is fixed, we see that we cannot make any of the strands thicker than half of the
distance between two consecutive top (or bottom) endpoints else we would have that the normal tubes
would self intersect along interiors. Because of this, we have that ∆[B] is bounded for all B ∈ BF . By the
completeness of the real numbers we conclude ∆[BF ] exists and is finite.

The importance of this result is that we can consider a maximizing sequence {Bm}∞m=1 ⊂ BF such that
∆[Bm]→ ∆[BF ].

We note that in [3] it was proven that maximum thickness is upper semicontinuous with respect to the
C0 topology on the space of C0,1 curves. Then in [3], it was shown that for a given presentation of a link L
with thickness τ > 0, L is C1,1 with Lipschitz constant 1/2τ . We can obtain a similar result for framed braid
presentations as follows:

Lemma 6. If B = (F, S) is a framed braid presentation with thickness τ = ∆[B] > 0, then each curve γi ∈ S
is C1,1 with Lipschitz constant 1/2τ .

Proof. We smoothly close the braid into a presentation of a link, L, in such a manner that ∆[L] = τ . We can
then apply the result from Lemma 4 of [3] to conclude that the presentation L must be C1,1 with Lipschitz
constant 1/2τ . Then we can recover B from L by cutting it at the proper points to conclude that it is also
C1,1 with Lipschitz constant 1/2τ .

Lemma 7. Let F be a braid frame and let Bm → B be a uniformly convergent sequence of framed braid
presentations such that each ∆[Bm] ≥ τ > 0 for all m ∈ N. Then B is a framed braid presentation with
∆[B] ≥ τ and is equivalent to (all but finitely many) Bm.

Proof. We first want to show that B is actually a framed braid presentation. Since ∆[Bm] ≥ τ > 0 for all m,
we then have by the semicontinuity of ∆ we know

∆[B] ≥ τ > 0.

Then since ∆[B] > 0, we know that none of the strands of B intersect each other. In addition, if we let
γim : [ai, bi] → R3 be the i-th strand of the m-th framed presentation Bm such that γim → γi . Since each
γim(ai) = γi1(ai) and γim(bi) = γi1(bi) for all m ∈ N, we must have that

γi(ai) = γi1(ai) and γi(bi) = γi1(bi).

So each γi respects the frame F . In addition, we have that since each γim must be weakly monotonic in the
z-axis. Hence (wlog) for t ≤ s, we have

πz(γim(t)) ≤ πz(γim(s)).
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Then by limit inequality of real numbers, we have

lim
m→∞

πz(γim(t)) ≤ lim
m→∞

πz(γim(s)),

and so we conclude for s ≤ t and
πz(γi(t)) ≤ πz(γi(s)).

Thus B is a framed collection of strands that do not intersect and are monotonic in the z-axis, hence B =
(F, {γi}i=1) is a framed braid presentation. We now prove that B is equivalent to all but finitely many Bm.
Since ∆[B] ≥ τ > 0, each curve of B must be surrounded by an embedded normal tube of diameter τ . In
addition, all but finitely many of the strands of the Bm lie within the respective i-th normal tube since the
convergence is assumed to be uniform. By the C1 convergence of the previous lemma, we also have that
the all but finitely many of the strands are tranverse to each normal disk of the normal tube. Each γim is
isotopic to γi by straight line homotopy within the normal disk. Hence the result is proven.

Now we can answer our existence question for ropelength minimizers from framed braid presentations.

Theorem 8. Fix a nonzero length l ∈ R and pick a frame F . Consider all framed presentations isotopic to B
of total length at most l; call this class BF . Then there exists a framed ropelength minimizer B∗ ∈ BF

Proof. By Lemma 5 we know that thickness is bounded and so ∆[BF ] is finite. Hence there must exist a
sequence Bm ∈ BF that maximizes thickness, i.e ∆[Bm] → ∆[BF ] as m → ∞. Now take each Bm and
smoothly connect arcs of finite length stemming from each point of F onto each Bm such that

1. The thickness of this new object is the same as ∆[Bm] for all m.

2. The resulting object can be represented as a smooth embedding of a circle.

3. The total lengths of the resulting sequence remains uniformly bounded.

We demonstrate these rules with the following picture:

Figure 6: Starting with a framed braid presentation (left), we smoothly connect arcs around the endpoints
of each Bm (pictured in orange) so that we obtain a knot presentation, Km. We connect these arcs in such
as way that ∆[Km] = ∆[Bm] and the lengths of Km are uniformly bounded. We note that it does not matter
whether or not the resulting knot is trivial, we just require a sequence of knots.

We call the resulting sequence of knot presentations Km. We note that ∆[Km], the maximal thickness
of these knot presentations, must approach ∆[BF ] as m → ∞. We also note that we can parameterize each
Km be a function γm : S1 → R3. Now we have a sequence of knots which has uniformly bounded lengths,
so we can apply the Arzelà-Ascoli Theorem as stated in [8] to extract a uniformly convergent subsequence
γmk

→ γ∗. Since we are considering a thickness maximizing sequence, after sufficiently large M we must
have that there is some τ ∈ R such that ∆[γmk

] ≥ τ > 0 for all k > M . We apply Lemma 6 from [3] to
assert that ∆[γ∗] ≥ τ > 0, so we know that the strands of γ∗ are non-intersecting. We point out that by
construction, F must have remained constant in each γmk

. Hence we can easily cut out a framed collection
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of strands from each γmk
and γ∗ that we call Bmk

and B∗ respectively. We must have that Bmk
∈ BF for

all mk. We now want to show that B∗ is our ropelength minimizer. We note that Bmk
converges uniformly

to B∗ by construction of these subsequences. Since each Bmk
is a framed braid presentation equivalent to

BF and ∆[Bmk
] ≥ τ > 0 for some τ ∈ R and sufficiently large k, we can apply Lemma 7 to conclude that

B∗ must also be a framed braid presentation that is equivalent to all (but finitely many) of the Bmk
. Since

length is lower semicontinous and thickness is upper semicontinuous, we must have that

Rl(B∗) ≤ l/∆[BF ],

and in particular that
∆[B∗] ≥ BF .

Since all but finitely many of the Bmk
are equivalent to B∗, we conclude that B∗ must be in BF . Then since

∆[BF ] is supremal, we must have
∆[B∗] ≤ ∆[BF ].

So ∆[B∗] = ∆[BF ]. Hence we have shown the existence of a framed ropelength minimizer.

5 A Definition of Ropelength For More General Braids

We would like to define minimal ropelength for any element of the braid group, which would be more
closely to the braids we would make out of physical rope. To do this we consider the following construction:

Let BF be an isotopy class of framed braids whose presentations are total length at most l. Now using
Theorem 8, we know that there exists a framed ropelength minimizing presentation B∗ ∈ BF , and we
consider Rl(B∗), the minimal ropelength of BF . Using our definition of braid composition in conjunction
with our notion of framed equivalence, we can define the equivalence class BnFn = BF ∗ ... ∗ BF inductively
(where Fn is the natural frame after the n-th composition). We consider the sequence

Rn =
Rl(BnFn)

n

as n→∞. We want to show that the sequence Rn converges. First we will show that Rn always contains a
convergent subsequence. We note that since the thickness of our presentations are always greater than zero
and the total lengths of our presentations are always non-zero, we must have 0 < Rn for all n. Next, we
note that since Rl(BnFn) is infimal, Rl(BF ) ≤ nRl(BF ), where nRl(BF ) corresponds to the ropelength of the
composition of presentations given by

Bn
∗ ∈ BnF ,

where B∗ ∈ BF is the ropelength minimizer of BF . Hence

Rn =
Rl(BnFn)

n
≤ Rl(BF ),

for all n. Thus we have
0 < Rn ≤ Rl(BF ), for all n ∈ N.

So by the Bolzano-Weierstrass theorem, we know that there must exist some convergent subsequence
Rnk

→ R∗. Now we claim that lim supn→∞Rn = R∗. We let ε > 0 and choose m ∈ N such that

Rm < R∗ +
ε

2
.

Now choose k ∈ N such that
Rl(BF )

k
<
ε

2
.

Select n > km. Then by the division algorithm we write

n = lm+ r, l ≥ k, 0 ≤ r ≤ m.

10



Now since Rl(BnF ) is infimal and we are composing braid presentations, we can obtain the following
inequality

Rn = Rlm+r ≤
Rlm + rRl(BF )

lm+ r
,

as the tightest presentation of the lm-times composed braid composed with r copies of the ropelength
minimizer for BF cannot be tighter than the ropelength minimizer for BnFn . Then since lm + r > lm and
r ≤ m, we have

Rn ≤
Rlm + rRl(BF )

lm+ r
≤ Rlm +

mRl(BF )

lm
.

By our assumptions on l, k, r, and m we obtain

Rn ≤ Rlm +
mRl(BF )

lm
≤ R∗ +

ε

2
+
ε

2
= R∗ + ε.

Hence if we have a convergent subsequence that converges to R∗, then the lim sup of the sequence must
converge to R∗ as well. Now assume that the lim inf of the sequence is not equal to the lim sup of the
sequence. By this assumption we can certainly extract a subsequence Rnj

such that

Rnj
→ lim inf

n→∞
Rn,

but this would mean lim infn→∞Rn = lim supn→∞Rn per the above result. Thus, our sequence converges.
As we just saw, for any isotopy class BF , the sequence Rn = Rl(BnF )/n converges. Since this sequence

has a well defined value for all isotopy classes, we define the minimal ropelength of a word in the braid group
as the limit Rn. We demonstrate the intuition behind this construction in the following picture:

Figure 7: We begin the construction by drawing the n = 1 case. On the left, we took any presentation of our
braid and applied Theorem 8, resulting in the image on the right (we omitted the thicknesses for a clearer
picture). In the n = 2 case, we took the previous minimizer and composed it with itself (left). Then we took
the ropelength minimizer from the isotopy class of the resulting braid (right). By this construction we can
see that the minimal ropelength of the resulting braid must be at least double the minimal ropelength of the
previous braid. We continue this process infinitely. Using the same principle, we note that the minimum
ropelength of the current step is always at most the sum of the minimum ropelengths of the previous two
steps. We included an orange box in the n = 3 case which demonstrates the intuition of "cutting the out the
ideal braid".
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As stated in the introduction, we consider this repeated composition construction in order to "forget the
endpoints", thereby allowing us to achieve the tightest braid presentation as it would be made from rope.
Although we have not yet managed it, we believe that this construction will not depend on the positioning
of the endpoints. In other words, we can pick two presentations that are equivalent (in the traditional sense)
and after sufficient compositions and tightenings, we will be able to cut out identical braid presentations
from the braid. We also believe that we will be able to find the ideal presentation as the middle part of the
third composition of our construction–however this is yet to be shown as well.

We have also yet to find any ropelength minimizers, framed or otherwise. This is because computing
such ropelength minimizers is actually rather challenging. We do however note that once we are able to
find ropelength minimizing framed braid presentations, we will then easily be able to find ropelength min-
imizing ideal presentations. We turn our attention in the next section to a discusion on framed ropelength
minimizers.

6 Ropelength Minimizers

Now that we have a definition of a minimal ropelength for both framed and non-framed braids, the
question becomes "how do we find such ropelength minimizers?" Not surprisingly, this question has proven
to be very difficult to answer in even the simplest cases. Hence the question of finding such minimizers
exceeds the scope of this paper.

With this in mind, we turn our attention to the braid σn
1 in the braid group on two strands. Although

we have yet to actually find the ropelength minimizer for σn
1 , by constructing models made of real rope,

we arrive at two possible candidates for what the ropelength minimizer would look like. This first possible
candidate is where one strand is straight, acting as a core, and the other strand wraps around that strand
(staying as tightly wrapped as possible) n-times. From here-on-out we call this candidate the "single twist
candidate" since out of the two strands, one is being twisted around the other. The other candidate is what
we call the "double twist candidate" and is given by letting both the strands twist around each other equally
(in a tightest manner). We give a picture of the single and double twist candidates in the follow figure.

Figure 8: On the left we draw the ideal framed single twist candidate (unthickened so we can better see
the behavior of the strands). We note that the red strand should be perfectly straight with the blue strand
tightly wrapped around it. On the right, we have drawn the ideal framed double-twist candidate (again,
unthickened so we can better see the strands’ behavior). We note that both the red strand and the blue
strand are moving around each other in a symmetric manner.

Between these two candidates, we conjecture that the single-twist candidate is the ropelength minimiz-
ing presentation for σn

1 . The intuition behind our conjecture is that by allowing one strand to be completely
straight, it will use less of the thickened rope than by allowing both strands to move around each other.
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Since our model seeks to describe braids made out of real rope, we decided to construct our candi-
dates out of thickened rope and experimentally determine which of the two has a shorter total length. The
experiment had the following instructions:

1. Take a piece of rope and measure its length precisely by stretching it and measuring it. Fold the rope
in half, stick a pencil in the fold. Hold the ends of the rope tightly. Twist the pencil as many times
as you can, counting the total number of half-twists. This, of course, would obtain the double twist
candidate

2. Take the rope, fold it over, stick a pencil in the fold. As tightly as you can, keep one strand straight
and wrap the other strand around it the same number of half-twists as step 1. Once you have done
this, mark the ends of the rope and measure the amount of rope it took to create this presentation.

3. Compare the two total lengths. Which is shorter?

After carrying out this experiment with a length of 29 7
8 " long and 1

8 " diameter rope we came to the
following data:

Candidate Diameter Length After 36 Half-Twists

Single Twist 1/8” 29 7
8”

Double Twist 1/8” 18 1
4”

Meaning that there is a approximately 38.9% decrease in the amount of rope needed to make the single-
twist candidate over the double-twist candidate. This particular experiment (although admittedly limited)
confirms our intuition that the single-twist candidate is the likely ropelength minimizer for σn

1 .

7 Where Do We Go From Here?

In this section, we would like to discuss some potential subjects to investigate with our ropelength model.
From the previous section, we know that one potential area of interest is to construct ropelength minimizers
for non-trivial braids of two or more strands.

Although we spent the previous section talking about the challenges of finding ropelength minimizers,
there is another interesting question involving ropelength minimizers: "are ropelength minimizing braid
presentations unique?" In [3], Cantarella et al. showed that the ropelength minimizing presentations for
knots and links are not necessarily unique by constructing two different classes of ropelength minimizing
presentations of links. The reason we ask this question is because we are finding ropelength minimizing
presentation of braids by first considering convergent subsequences of framed presentations that minimize
ropelength, then taking the limit of repeated compositions of these framed minimizers. Since we are only
considering convergent subsequences of these framed presentations, there is a chance that we can extract
two subsequences that converge to two different ropelength minimizing presentations within the same iso-
topy class. By answering this question, we can determine how much control we have over the convergence
of these framed subsequences. If the answer is that the presentations are not unique, this opens up other
similar questions such as "are there any braid types that whose minimizers are unique?" and will inspire
some interesting questions.

In addition to finding ropelength minimizing presentations, there are several other avenues that we are
also considering as we go forward. One task is to define the "roundness" of a braid. As mentioned in the
Acknowledgements section, this project was based on a Summer REU which sought to define how "round"
a given presentation of a braid is. The question was based on the observation that when some braids are
made out of physical rope, they can lie flat on a table, whereas other braids will appear much more round
and cannot be laid flat. An example of this is taking the standard three stranded braid that is used for
braiding hair given by the word (σ−12 σ1)n, and the standard four stranded found in challah bread given by
(σ3σ

2
2σ
−1
1 σ−22 )n. Making these braids as tight as possible out of physical rope, one will find that the stan-

dard hair braid looks fairly "flat" and the challah braid looks fairly "round." A good starting point for trying
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to define the roundness of a braid would be to look at the convex hulls of the cross sections of a ropelength
minimzing presentation of the braid, measure the eccentricities of these convex hulls, then average using
an integral. However, this will not necessarily work in general as one needs to account for how the convex
hull can rotate along the cross sections.

Another interesting question to look at is "how does the ropelength of of a braid presentation relate to
the ropelength of a knot or link?" This is actually a fairly broad question as it stands and we can choose to
interpret it in a few possible ways. One possible interpretation of the question is "Given a presentation of
a knot or link, how does the ropelength of the knot or link compare to the ropelength of the corresponding
(framed) braid whose closure is the knot or link?" When considering this question, we would probably
want to look at the corresponding braids (equivalent through Markov moves) that have a minimal number
of strands. Otherwise, there would be an unnecessary length of rope which could lead to poor bounds on
the ropelengh of the knot or link. Another interpretation of the question is "Given a ropelength minimizing
presentation of a braid, if we close up the braid in a ’natural’ way, can we obtain a ropelength minimizing
presentation of the corresponding knot or link?" Of course, the first step to answering the question would
be to decide what is meant by the "natural way". It should be obvious that any ’natural’ way of closing
up the braid would require not adding any length of rope to the presentation; so we cannot use the same
method that we used in proving Lemma 6. As a result, we believe that the best way to define a natural pre-
sentation would be to take the presentation and, in such a way without changing the thickness and length
of rope used, curve the braid until its top endpoints meet its bottom endpoints. This account of a ’natural’
braid closure is only intuitive, of course, and it has been very challenging to give a rigorous construction of
this process. The reason why we are interested in investigating these two questions is because, in general,
computing ropelength and minimal ropelength is very hard for a given knot presentation. As such, it is
rather helpful to create bounds on the miniminal ropelength. [4, 5] and many other such papers have been
written on creating tighter bounds for minimal ropelength of knots and links, and there is a possibility of
creating a tighter bound here. This question is interesting to explore because it might allow for the rope-
length model of braids to contribute to existing research.

As we saw, there are many interesting questions that one can ask about the ropelength model for braids.
However, much like in physical knot theory, we can create other theories that model different physical phe-
nomenon. Besides the ropelength model for knots and links, there are also so-called "knot energy models"
The inspiration for knot energies comes from the following situation as described in [9]: Make a knot out
of a conductive wire, then run a current through the wire. Due to Coulomb’s law, the strands of the knot
will repel each other. This repelling force, in turn, creates an ideal presentation of a the knot. Knot energies
are models which seek to model these sorts of situations in order to find other ideal conformations of knots
and links. As it turns out, inventor Alexander Graham Bell discovered in [2] that in an (analog) telephone
transmission circuit, when transmitting cables are twisted around one another the electrical disturbance
from their inductive action is reduced. In other words, the transmitted signal is cleaner when the two trans-
mitting cables form a two stranded braid. This braiding action seems to be a natural way to define braid
energies, and minimizing these braid energies will give ideal presentations of such braids. Many interest-
ing questions can arise depending on the type of cross-talk interference being chosen such as: are there
cross-talk minimizing braid presentations for each isotopy class of braids? And also what is the optimal
way to braid n strands so that cross-talk is minimized? Would this be unique? We can also ask: "What is
the relationship between the ideal braid-energy model of a given braid and the ideal ropelength model of
the braid?" We conjecture that given the nature of the twisted pair, the ideal presentations of both of these
models will likely correspond.

As we can see, there are many interesting questions that can be asked when we develop physical theories
of braids.
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8 Conclusion

In this paper, we defined a ropelength model for braids based on the works of [3, 6, 7]. We adapted
this model by first creating a so-called "framed braid presentation" which required a choice of endpoints.
After which we developed a ropelength model for these framed presentations by defining the maximimal
thickness for a presentation through employment of an upper-semicontinuous functional created from the
global radius of curvature. Then we showed that there exist ropelength minimizing braid presentations
on a given frame. However, since frames are problematic for an accurate physical model, we defined the
actual ropelength minimizing braid presentation by using a sequence that composes the braid with itself an
arbitrary number of times and tightening the resulting braid after each composition. This was done so we
can "forget the endpoints" and "cut the ideal presentation" somewhere along the middle of this maximally
tightened braid that has been composed with itself some arbitrary number of times. We acknowledge that
we have yet to define either of these notions of "forgetting the endpoints" and "cutting out the ideal braid",
however the notions make intuitive sense. We showed that this construction is well defined for all braid
types, however we also yet to prove that this presentation will be the same regardless of choice of frame. We
also talked about the challenges of finding the ropelength minimizers for even the simplest of braid types,
i.e those of the form σn

1 for arbitrary n ∈ N. We noted that in order to find the desired form of ropelength
minimizing presentations, it is likely sufficient to study the framed ropelength minimizers first. We also
stated that we believe the framed ropelength minimizer of σn

1 is likely to be given by a core of rope with the
second rope wrapping around it n times, and we gave an experimental and intuitive justification of why
we believe this to be true. Lastly, we mentioned potential areas of development and possible uses for this
model as well as the development of other, similar physical models for braids.

15



References

[1] Adams, C. (2004). The knot book: An elementary introduction to the mathematical theory of knots.
American Mathematical Society.

[2] Bell, A. G. (July 19, 1881). Telephone-Circut (United States Patent Office Patent No. 244,426).

[3] Cantarella, J., Kusner, R. B., & Sullivan, J. M. (2002). On the minimum ropelength of knots and links. Inven-
tiones Mathematicae, 150(2), 257–286. https://doi.org/10.1007/s00222-002-0234-y

[4] Denne, E., Diao, Y., & Sullivan, J. M. (2006). Quadrisecants give new lower bounds for the ropelength of a knot.
Geometry & Topology, 10(1), 1–26. https://doi.org/10.2140/gt.2006.10.1

[5] Diao, Y. (2020). Braid index bounds ropelength from below. Journal of Knot Theory and Its Ramifications,
29(04), 2050019. https://doi.org/10.1142/S0218216520500194

[6] Oscar Gonzalez, John H. Maddocks. Global Curvature, thickness, and the ideal shape of knots. Proceedings
of the National Academy of Sciences of the United States of America, Vol 96, pp. 4769–4773, Applied
Mathematics and Biophysics, April 1999.

[7] Oscar Gonzalez, Rafael de la Llave. Existence of Ideal Knots. Journal of Knot Theory and Its Ramifications.
October 2002.

[8] Dmitri Burago, Yuri Burago, Sergei Ivanov. A Course in Metric Geometry. The American Mathematical
Society: Graduate Studies in Mathematics Vol. 33. 2001.

[9] Stasiak, A., Katritch, V., & Kauffman, L. H. (Eds.). (1998). Ideal knots. World Scientific.

16


