Relations on the Mapping Class Monoids
of Planar Surfaces

Victoria Quijano
Advisor: Laura Starkston
University of California. Davis

Spring 2021



Contents

1 Background Information 2
1.1 Introduction . . . . . . . 2
1.2 Surfaces . . . . 2
1.3 The Mapping Class Group of a Surface . . . . . . . . . .. ... ... . 3
1.4 The Finite Generation of the Mapping Class Group . . . . . . . . . . . . . . .. . . 4

2 Comparing Products of Dehn Twists 6
2.1 Braids Corresponding to Dehn Twists . . . . . . . . .. .. ... ... ... 6
3 Relations on the Mapping Class Monoid of the Sphere with Boundary 17
3.1 Relations that hold for general Sy . . . . . . . . ... oo 17
3.2 Relations on the Mapping Class Monoid of Soo 24
3.3 Considering additional relations in S5, . . . . . .. .. ... 26
34 Relationson S, . . . ... .. L 28

3.5 Relationson S§o . . . . 36



1 Background Information

1.1 Introduction

The mapping class group of a surface is the set of isotopy classes of homeomorphisms from the set to
itself. with its binary operation being function composition. Notably. the entire mapping class group
of any surface is generated by finitely many Dehn twists. a particular kind of homeomorphism that
is performed relative to a chosen curve on a surface. In their article Geemetric Presentaticns for the
Pure Braid Group. Margalit and McCammond presented a full set of relations on the mapping class
group of a genus 0 surface with punctures.

The focus of this thesis is on relations that hold on the mapping class monoid of certain planar
surfaces. A monoid is a set with a binary operation that has all of the same axioms as a group.
except for closure under inverses. This means that some elements of a monoid may not have an
inverse element also in the monoid. The mapping class monoid of a surface consists of all products
of positive Dehn twists along any curve on the surface. In this thesis. we will consider relations that
exist in the mapping class monoids of particular surfaces. and we will occasionally be working in the
submonoid that consists only of positive Dehn twists generated by positive twists on the generators
of the mapping class group.

The structure of this thesis is as follows: We will first discuss surfaces and their classification. the
mapping class group of a surface. and methods for better understanding the elements of the mapping
class group. The majority of this information comes from Farb and Margalit's A Primer ¢n Mapping
Class Groups |2]. Then we will discuss the generators of the mapping class group and use braids as a
method of comparison between mapping classes. and finally, we will present new relations and prove
them using the tools described.

1.2 Surfaces

We will begin by defining surfaces and their classification so that we may define the mapping class
group of a surface.

Definition 1.1. A surface 1s a 2-dimensicnal manifcld

In this thesis. we will be focusing on the mapping class monoids of bounded. connected. orientable
surfaces. Therefore. we can use the following theorem to classify the surfaces we consider.

Theorem 1.2. (The Classification of Surfaces) Fuery clesed, ccnnecled, crientatle surface 1s
hemecmarphic te the ccnnect sum of a 2-dimensicnal sphere sphere and g > 0 teri Every compact,
connected, crientatle surface can te cltained ty remcuving b > 0 disjeint cpen disks frem the intericr
of a closed surface There emsts a tijeclive correspondence telween the sel of pairs {(g.b) ¢.b> 0}
and the set of hemeemaorphism types of compact surfaces [4]

In particular, the value g > 0 is called the genus of a surface. and b > 0 is the number of boundary
components. Furthermore, removing n > 0 points from the interior of a compact surface yields a
noncompact surface. In this case. the noncompact surface is said to have n punctures. Occasionally it
will be convenient to instead consider punctures to be marked points on the surface. In this case. we
distinguish them as individual points. The topological properties of the surface in either case are the
same. so we can refer to them as marked points or punctures. Additionally. boundary components
are also called holes. and we will use this term when it is convenient.

For the remainder of this thesis. we will use ‘surface” to refer to a compact. closed. oriented surface
or a noncompact surface resulting from removing n > 0 points from the interior of a compact. closed.



oriented surface. Therefore. all surfaces considered can be represented by the triple (g. n.b). We will
use the notation Sg’n to denote a surface of genus g with n punctures and b boundary components.

1.3 The Mapping Class Group of a Surface
The following terms will be used to describe the elements of the mapping class group of a surface.

Definition 1.3. A homeomaorphism tetween topclogical spaces X and Y 1s a functicn f: X —Y
such that f 1s tijective and continucus and has a ccntinucus muverse

Definition 1.4. A haomotopy letween funclticns f and g 1s a map H © X x [0.1] = Y such that
H(x.0)= f(z) and H(z.1) = g(x)

Furthermcre, an isotopy 1s a hemetepy H @ X x [0.1] = Y such that, for allt € |0.1], H(z.t)
X =Y s an emledding Equivalently, H(z.t) 1s a hemecmerphism cnlc its image

We are now equipped to define the mapping class group of a surface.
Definition 1.5. The mapping class group cf a surface S, dencled Mcd(S), 1s the quctient
Hemect (S, 0S)/Homecy(S. 0S).

where Homec™(S.0S) 1s the greup cf crientaticn-preserving hemecmaorphisms frem S to atself
that restrict tc the identity cn its toundary, with functicn cempesiticn as the tinary cperaticn
Homecy(S. 0S) denctes the connected compenent cf the identity within this greup

Equivalently. Mod(S) is the group of isotopy classes of homeomorphisms from S to itself. In other
words, two elements of Mod(S) are equivalent if they are isotopic to one another.

In order to better understand the elements of the mapping class group of a surface. called mapping
classes. we can use a proposition called the Alexander method to narrow our focus to the action of
mapping class on finitely many curves and arcs on a surface.

First. we will define some terms.

Definition 1.6. A closed curve cn a surface S 1s a continucus map f: S' — S Furthermcre,
clesed curve 15 simple if f 15 an emledding, or equivalently, of f: ST — f(S) 15 a hemecmaorphism,
and a clesed curve 1s essential 1f 1t 1s nct hematepic tc a point ¢r a Leundary ccmpenent

Definition 1.7. A proper arc ¢n a surface S 1s a map o : |0.1] = S such that o= (PLOS) = {0.1},
where P 1s the sel of marked pcints cn S A proper arc 1s simple if ils restriction tc (0.1) s an
emtedding

Occasionally we will consider curves and arcs up to homotopy. In particular. the homotopy class
of a curve or arc o contains all curves § such that there exists a homotopy H : a x |0.1] — f.

Definition 1.8. The geametric intersection number tetween the homctopy classes a and b ¢f
simple clesed curves in a surface S 1s the minimal numter cf intersecticn points tetween represen-
tatives of each class Furthermcre, twe curves o and B c¢n a surface are in minimal position if
aN B s equal tc the gecmetric intersecticn numter cf thewr respective hemcetepy classes

Definition 1.9. A ccllecticn cof simple closed curves {~;} fills a surface S of the complement of |J; i

in S s a disjeint unicn of disks and cnce-punctured disks

The following result will allow us to classify elements of a mapping class group by considering its
action on a finite collection of curves and arcs.



Proposition 1.10. (Alexander method, |2]) Let S te a compact surface, with ¢r withcut marked
poants, and let ¢ € Homec(S.0S)  Let v1.. ...y be a collection of essential simple clesed curves
and simple preper arcs in S such that

1 Feralli# j, v and v; are in minimal pesiticn

2 Feralli# j. v and vy are ncl 1sclepic

5 Fer all distinct 1. j. k, cne cf v Oy, % O Yk, and ;0 g 15 empty

Then the following twe statements are true.

v If there 1s a permutaticn o of {1.....n} such that, for all i, ¢(7;) 1s wsctepic 1o Vy(y) relative
tc 0S, then ¢(U~;) 1s 1sctepic to Ly, relative te OS

1 Assume {v;} fills S If ¢, fizes each vertex and each edge cf A while preserving crientation,
then ¢ 1s 1sctopic to the wdentity Ctherwise, there exists a nontrivial power of ¢ that 1s isctepic te

1dentity

This result will allow us to compare homeomorphisms from a surface S to tself. In particular.
we can use statement (ii) by choosing a set of curves and arcs on S that satisfy the conditions in
the theorem. find the image of the collection of curves under each homeomorphism. Then the two
homeomorphisms are isotopic to each other if and only if the images of the collection of curves and
arcs are homotopic to each other.

1.4 The Finite Generation of the Mapping Class Group

As mentioned in the introduction. the mapping class group of any surface is generated by a finite
number of Dehn twists. a specific kind of homeomorphism. We will now define and introduce this
idea precisely.

Definition 1.11. Guven an criented surface S, and o a simple clesed curve in S, let N te a regqular
neightcerheed of o Checse an crientaticn preserving hemecmerphism ¢+ A — N, where A denctes
the annulus

Then the Dehn twist about « 1s the hcmecmerphism T, . S — S defined Ly

T (o) — poTo¢ () ifweN
S P if x € S/N

Figure 1.1 shows an example of a Dehn twist being performed on an annulus. When applied to
a curve on a surface. the neighborhood around such a curve forms a sub-annulus, and we perform a
Dehn twist on this annulus.

©-©

Figure 1.1

The Dehn twist pictured above is a left-handed Dehn twist. This is because. if we follow the
arc shown from another point on the surface heading toward the sub annulus. once it arrives at the
sub annulus. it will turn left to follow the shape of the curve. This is well-defined. even without
determining an orientation for the curve |2|. By convention. we will consider left-handed Dehn twists



to be positive Dehn twists. The inverse of a positive Dehn twist will be a right-handed. or negative
Dehn twist.

Dehn twists are also well-defined on isotopy classes of curves |2]. Typically the notation for a
Dehn twist would be T),. where a is the isotopy class of a simple closed curve a. However, we will
use T, to denote the Dehn twist over the isotopy class of a.

Dehn twists are relevant because the mapping class group of a surface is generated by Dehn twists
over finitely many simple closed curves on that surface. The following theorems are all related to
this result.

Theorem 1.12. (Humphries generators, |3]) Let ¢ > 2. Then the group Mod (S, ) is generated
by the Dehn twists about the 2¢ + 1 isotopy classes of nonseparating simple closed curves

as shown in Figure 1.2,

Figure 1.2

In the following theorem. let PMod(.S) denote the subgroup of Mod(S) where each element fixes
the punctures individually.

Corollary 1.13. Let S te any surface ¢of genus g > 2 Then PMcd(S) 1s generated ty finitely many
Dehn twists atcut necnseparating simple clesed curves in S [2]

In particular, twists over the following set of curves generate PMod(S). where the small circles
can be taken to be punctures or boundary components.

Figure 1.3

Furthermore. for surfaces with at most one boundary component, Mod(S) is generated by the
curves shown in the figure above. However. if S has n > 2 boundary components. then Mod(S) is
generated by the curves depicted and n — 1 boundary parallel curves |2].



2 Comparing Products of Dehn Twists

2.1 Braids Corresponding to Dehn Twists

For the remainder of this thesis. we will restrict our focus to the surface of genus 0 with with n > 0
boundary components. In particular. we know that any element of the mapping class group of a
surface can be written as the product of Dehn twists. so relations between products of Dehn twists
will help us determine whether two mapping classes are equivalent.

We will first develop techniques for comparing mapping classes of the sphere with 1 boundary
component and n— 1 punctures. which we will apply to the sphere with no punctures and n boundary
components.

Most importantly. we will be able to represent Dehn twists on such a surface using braids.

Definition 2.1. A braid 1s a set c¢f strings that each have fized endpcints ¢cn a tar on the left and
cn the right, as i the figure telcw, where any vertical plane tetween the tars intersects each strand
exactly cnce

A

—///\/
o/

Figure 2.1

We can define an isotopy between braids if we equate a braid with its embedding into R?. Then
a braid is isotopic to another braid if there exists an isotopy between their embedding maps. Two
braids are considered equivalent if they are isotopic. In other words. two braids are equivalent if one
can be converted to another by stretching and moving its strands without moving the endpoints of
any strands or breaking a strand.

Any vertical plane between the plates of a braid intersects each strand once. and we can perform
an isotopy to ensure that there is a clear ordering on the relative vertical positions of the strands
everywhere except directly at their crossings. We call the highest strand the first strand. the one
below it the second strand. and so on. After each crossing. this order will change. but we will apply
this terminology based on current relative position.

We will use the following notation for braids:

Let 0; denote the crossing where the ith strand passes in front of the (i + 1)th strand. Then o,
represents the crossing where the (7 + 1)th strand passes in front of the ith. Then a braid can be
represented by a product of ¢;'s and o; !'s. called a word |1].

For example, we can denote the braid in Figure 2.1 by the word

05105101020101 0901

Because the strands can be ordered everywhere except at the crossings themselves. this notation
is well-defined. Furthermore. strands must cross adjacent strands before reaching others. so the
collection of o; and o; ! for 1 < i — 1 < n describe all possible crossings in a braid.

We can use this notation to determine whether two braids are isotopic. In particular. we have
the following theorem:



Theorem 2.2. (|1]) Two braids are isotopic if and only if their associated words are equivalent using
the following relations:

1

1. 0,0;' = 0, 0;. and both are equivalent to no crossing at all

2. 0i0i410; = 0110041
3. 005 = 004 if 11— > 1

We can also use braids to represent disks with punctures. A disk with punctures is equivalent to
the surface of genus 0 with one boundary component and n punctures, S, ;. We begin with such a
disk. and we perform a homeomorphism that arranges the punctures into a semicircle. Then we can
turn the disk to the side. as in the example below with S5;. We will assume that S}, _; has a metric,
and that the punctures are arranged so that they form the vertices of a convex polygon under this

metric.

Figure 2.2

Additionally. we can perform a type of homeomorphism called a convex swing on such a disk.

A convex swing on a convexly punctured disk is the movement of a collection of n punctures
contained in a convex curve, where the punctures permute themselves n times. each time sending the
puncture in the first position to the second position. the second goes to the third, and so on. until
each puncture returns to its original position. By convention., we will consider convex swings to go
in a clockwise direction.

This motion can be represented by a braid. We can treat the disk the bar on one side of a braid
and each puncture as the basepoint of a strand. Then the strands can represent the movement of
each puncture under a convex swing.

For example. if the first and second puncture twist around each other in a clockwise fashion. we
can track their movement in the following way:

Figure 2.3

Using the notation for crossings in braids. we can say that this corresponds to the braid denoted
by o top

For simplicity. when we use this technique later in the thesis. we will arrange the punctures so
that they sit on a vertical line. In such a case. some curves containing various punctures will not be
convex. but we can always skew the punctures so that they are in the shape of a half circle.



Definition 2.3. A pure braid 1s a traid such that each strand has the same pcsiticn cn tcth
endpcints

We can also think of braids as the motion of points in space. With this conceptualization we can
say that. in a pure braid. the points return to their original positions at the end of the braid.

We can compose two braids by connecting the endpoints of one with the starting points of the
other. Under the composition of braids. the set of pure braids on a set of points A. denoted PBRAID 4.
forms a group.

We can relate pure braids to Dehn twists with the following result:

Let D4 be a disk with n punctures. where A is the set of punctures. Then PBRAID 4 is isomorphic
to the mapping class group of Dy [5].

In particular. Lemma 2.4 tells us how to relate Dehn twists to pure braids.

Lemma 2.4. Let Dy te a convexly punctured disk In the mapping class greup, €very convex swing
cver a set of punctures B 1s equivalent tc the Dehn twist cver the convex curve whese itericr contains
cxactly the punctures in B Additicnally, every Dehn twist cver a convexr curve b 1s equivalent tc the
convex suing cuver the points B contained i the intericr ¢f b [(1)]

By the isomorphism between the pure braid group and the mapping class group. any product of
convex swings on a disk D 4 is exactly equivalent to an element of the pure braid group. Furthermore.
a product of Dehn twists is equivalent to a product of convex swings. Therefore. given two products
of Dehn twists on D 4. they are equivalent in the mapping class group if and only if their associated
braids are isotopic.

Because the focus of this thesis is on spheres with boundary components and no punctures.
we will apply this result to such surfaces. In particular. given a surface Sj,. we can perform a
homeomorphism that stretches one boundary component around the others so that it lies flat. Then it
looks like a disk with one boundary component on the outside and n—1 interior boundary components.
We can perform an action called capping to the interior boundary components. in which we take n—1
once-punctured disks and glue the boundary of each one to an interior boundary component. Then
we are left with the disk with n— 1 punctures. as before. In particular. we can use braids to represent
products of Dehn twists on spheres with boundary by capping its interior boundary components and
finding the braids associated with the Dehn twists over the same set of curves.

However. the condition that the braids for two product of Dehn twists are isotopic is no longer
sufficient for determining equivalency in the mapping class group. Therefore. we must find a stronger
condition. We will use a value called multiplicity to provide a necessary and sufficient condition.

Definition 2.5. Under a preduct of Dehn twists cver a ccllection of conver stmple clesed curves
{7. . .} on a surface with teundary, the multiplicity of a tecundary compenent b; 1s the numter
of curves y; such that b; 1s ccntained in the intericr cf v;

Using this term. we make the following claim:

Theorem 2.6. Twc preducts of Dehn tuists cver convex curves in S are equivalent of and cnly 1f
theiwr asscciated traids are 1sctopic and each intericr teundary compenents have the same multiplicaty
under each preduct of Dehn twists

If we have two products of Dehn twists on the sphere with boundary that are equivalent. then
capping each of the interior boundary components with a punctured disk and performing each product



of twists will yield the same braid. Furthermore. the first half of the proof of Lemma 2.3 in |6] shows
that multiplicity is well-defined under any element of the mapping class group. so the multiplicities
of each boundary component under each product must be equal as well

The proof of Lemma 2.3 in |6] also shows that. if two products of Dehn twists have isotopic braids
and each boundary component has the same multiplicity. then the two products of Dehn twists are
equivalent in the mapping class group. This completes the argument.

Finally. we will present one last result that will be useful in determining what relations may exist
between products of Dehn twists.

Definition 2.7. A link s a set ¢f knctted leops that are tangled tcgether FEach lcop 1s an emtedding
of the curcle S intc three-dimensicnal space  Twc links are equivalent 1f there exists an 1sctcpy
tetween them

Definition 2.8. The closure ¢f a traid s the link that results frem connecting the starting and
ending pcints of the traid

If there exists an isotopy that relates two braids. then their closures are also isotopic. This is
because the conversion from braid to link is an isotopy itself. and the composition of two isotopies is
an isotopy.

In particular. this means that link invariants can be applied to braids by taking their closure. We
will present one such invariant.

Definition 2.9. Let M and N le twc criented ccmpenents of a hink  Then the linking number
tetween them 1s calculated in the fellowing way:
Farst we assign a value ¢f 1 ¢r —1 tc each crecssing tetween M and N, using the follcwing guide.

AN
/ N

Figure 2.4

Finally, we add up the values assigned tc each crcssing and divide the sum ty 2 The resulting
value 1s the linking numter tetween M and N

Linking number can also be applied to pure braids. This is because the crossings are preserved
when taking a braid to its closure. and each strand in a pure braid corresponds to a distinct component
of its closure. so the pairwise linking numbers between components are exactly the pairwise linking
numbers between strands. Furthermore. we consider the strands to have an orientation from right to
left. and this can be taken to be the orientation of the resulting component of the link.

Additionally, the linking number between any two components of a link is a link invariant [1].
This means that. if two links are isotopic. then the linking numbers of any pair of components in each
link are equal. In particular. if we have two braids such that any choice two strands has a different
linking number in each braid. this means that their closures are not isotopic. Therefore. the braids
themselves are not isotopic.



As a result. if we have two braids and we can show that any two of the strands have differing
linking numbers in each braid. we know that they are not isotopic. We will apply this to the braids
corresponding to Dehn twists. We will define the linking number between two interior boundary
components to be the linking number between their associated strands.

We will now present a result that will allow us to easily calculate the linking numbers of any Dehn
twist.

Theorem 2.10. Given a preduct of Dehn twists cver a collection of curves {v1... ..y} on the surface
Sgo: the linking numter tetween twe strands b,. b, in the ccrrespending traid 1s equal tc —m, where
m s the numler cf curves «y; that centain toth by and b, 1n thewr intericr

Prccf Let by, ....b, be the boundary components of Sj,. First. we perform a homeomorphism so
that S§, lies flat in the plane with b, as its outer boundary component. Take B := {bay. -+ . ba, } tO
be a set of interior boundary components on S4o. and let v be the convex curve containing exactly
these boundary components. We claim that the Dehn twist over  will give a linking number of —1 to
each pair bg,. bs;. and a pairwise linking number of 0 to any pair of curves where one is not contained
in v in the corresponding braid.

We will consider the braid resulting from such a twist. To do this. first we will cap the n — 1
interior boundary components and find the braid corresponding to the twist over + on the resulting
surface.

We will find such a braid by performing a homeomorphism that arranges the punctures in a
vertical line such that the puncture corresponding to b,, is at the top and their indices are in order.
We can find the braid corresponding to the twist over v by skewing the punctures so that they form
a semicircle and performing a swing on the set B.

As a convention. we will draw the crossing between any two strands to be level with the basepoints
of the higher strand. Using this convention. the resulting braid is below:

gl

Figure 2.5

[

From the first section of this braid. we see that b,, has two crossings of the value —1 with each
other strand. and it does not cross any other strands later in the braid. Thus. the linking number
between b,, and any other hole in B is % =-1

Then b,, , crosses similarly over all holes b,, such that i < k& — 1. giving a linking number
of —1 between b, , and any other hole above it. Furthermore. we already know that b, has a
linking number of —1 with b,, ,. so b,,_, has a linking number of —1 with every other element of B.
Continuing inductively. we see that. for any choice of ¢ and j. b,, and b,, will have a linking number
of —1.

Now we will consider the linking numbers between holes in B and holes not in B. We will add
three arbitrary strands to represent all possible cases: one above all b,,. one between them. and one
below all of them.

Then. following the same procedure. we find the braid corresponding to the twist over ~.



Figure 2.6

If we skew the punctures. we can see that the twist over v would exclude the strands between b,,
and b,, , because they will be farther back than the edge of v that the points in 7 will be following.

Let by, be given. For each b; not in B. either b; < a;. a; < bj < ay. or a; < b;.

In the first case. because b,, does not cross any strands below it. there are no crossings between
be, and b;. so their linking number is 0. Similarly. if a; < b;. then b,, will not cross b; so their linking
number will again be 0.

Finally. if a; < b; < a1. then a; crosses in front of b; both on its way up and on its way down.
The first crossing will have a value of —1 and the second will have a value of 1. Thus. the linking
number between them will be % =0.

Furthermore. given b;. b, that are both not in B. since both stay in place. they will also have a
linking number of 0. Thus, a positive Dehn twist over B will yield a linking number of —1 between
any two holes contained in it and a linking number of 0 between any other pair of holes.

Now we will consider the case where we are twisting over a non-convex curve containing {bq, . .. . by, }.

Let v be the non-convex curve containing these boundary components. We will cut along ~
and obtain two subsurfaces that are also genus 0 surfaces with boundary. Then we can take a
homeomorphism on each one. For the subsurface containing {b,,....bs, }. we can reshape it so that
its boundary has a convex shape. Similarly. we can take a homeomorphism on the other part to
reshape the cavity left by cutting out the subdisk so that the boundary is the same shape as the
subdisk under the chosen homeomorphism.

Now we can glue them back together on the boundary pieces that resulted from cutting. We claim
that this is a homeomorphism on the whole surface. Indeed. it is a homeomorphism on each of its
pieces. and the boundary is a circle. which means that all homeomorphisms on it are in one isotopy
class. Therefore. if this function is not continuous on the boundary that is glued together. we can
take an isotopy that will ensure that it is continuous on this curve. Thus. we have a homeomorphism
of the surface that takes a non convex curve containing {b,,.... b, } to a convex curve containing
[+ by}

This can be taken to be an element of the mapping class group of the surface. because it is a
homeomorphism that fixes the boundary pointwise. Thus. up to isotopy. there exists a collection of
curves {c1. . ... ¢y} such that some product of positive and negative Dehn twists over curves in this
collection will be equivalent to this homeomorphism in the mapping class group. Call this product
of twists ¢.

Then we know that ¢(v) gives the convex curve containing {b,,....bs, }. Call it ¢. Equivalently.
we can say that T, = Ty(. From |2]. we know that Ty = ¢poT.0¢™ .

Because ¢ is equivalent to a product of Dehn twists. we can represent this with a braid. By the
properties of inverses in a group. the inverse of a product of Dehn twists Ty, - - - T, is equivalent to
the product of the inverses T' 0;1 T le‘ Let b; and b; be given. Assume they have a linking number
of x under the twist over ¢ and a linking number of y under ¢. Then. under ¢~!. they will have a



linking number of —x because the inverse of a twist over a curve gives a linking number with opposite
sign from the twist over the original curve. Thus. the total linking number between them under Ty
is y + () + (—y) = —1. Therefore, twisting over a non-convex curve containing {b,,.. .. b, } gives
the same pairwise linking numbers to all boundary components as twisting over the convex curve
containing the same b,;,.

Therefore. in a product of convex Dehn twists. the linking number of any two holes b;. b; will be
equal to —1 times the number of twists over curves that contain both 0; and b;. O

Now we will present two results that will allow us to convert products of Dehn twists into words
in the braid.

iooby Ty v, T b, 15 156tcpac Lo the

Theorem 2.11. Fcr i < j, the traid ccrrespending to Ty, 10, Th
-1 -1 _-1_-1 11

traid dencted Ly 031110;]2 L 00 0 O 0 90,
Preef First. we will find the word that represents Tp, . for arbitrary & < j.

By the notation. we know that we are twisting over the convex simple closed curve containing by
and b;.

This results in the following braid:

Figure 2.7

The word that denotes this braid is

-1 -1 -1 _—1_-1
0j-10j-2"" " Op410 Of Ok+1' ' 0201

Recall that Dehn twists are applied from right to left. while the word of a braid represents the
braid from left to right. Taking this into account. for any k. Ty, . T}, »; corresponds to the braid

-1 -1 -1 -1 _-1 -1 -1 -1 -1 _—1
O—jflo—j72.”0—k+10—k O 0k+1"'0—,7?20—,7'710—'7]0—3'72'"O—k+20—k+]0—k+]0—k+2"'O—j720—j71

Performing cancellation with inverses gives us the word

-1 -1 -1 _—1_-1_-1
051052 " Ok110f O Opp10k42" 02051

We can see this visually as well.

-1 -1 -1 -1 _-1 -1 -1 -1 -1 _—1
O—jflo—j72.”0—k+10—k O 0k+1"'0—,7?20—,7'710—'7]0—3'72'"O—k+20—k+]0—k+]0—k+2"'O—j720—j71

corresponds to the following braid:



Figure 2.8

Cancelling out the inverses in an isotopy analogous to the Reidemeister 2 move for knots. we get

Figure 2.9

Then we can perform an isotopy that smooths the strands so that the braid follows our standard
conventions. This is exactly the braid that is denoted by

-1 -1 -1 _—1_-1_-1
051052 " Ok110f O Opp10k42" 02051

Figure 2.10

If we begin with & = 7 and continue the process inductively. the resulting braid will be exactly
that which is denoted by
0050y oo o ooy oo

The braid will look like this:




Figure 2.11
O

This result can also be applied to twists that do not contain all consecutive b;’s. In particular,
for a product of Dehn twists of the form

Tbj—l-,bij o Tbk+l:bijk—l-,j Y Tbi+1-,biji-,bj

j-2:05
we can first take the strand to be invisible, apply the twist as in the proof above, and add the
kth strand behind the twisted strands. This will be denoted by the word
-1 _—1 —1 _—1_—1 -1 _—1_—1_—1 ~1 ~1 -1 _—1
0; 102" " Op10 O 1" 0;110; 05 Oi41 O 10kOp 1 0 90,54
We can also do this for multiple values of k. This gives us a way to simplify braids quickly. and
will be used when proving various relations.
We will also present relations on the words representing braids that can be derived from the three
known relations:

-1
7

1

1. 0,0, " = 0, 0;. and both are equivalent to no crossing at all.

2. 0i0i410; = 0110041

3. 0,05 = 0,05 if ’l—] > 1
In particular. we have the additional relations:

1 -1 -1 -1 _-1_-1
4 07 0,540, =010, 0.4

This can be obtained by taking the inverse of both sides of relation (2).

ol =0 lo7 for i—j > 1

5. 0 J J

This can be obtained by taking the inverse of both sides of relation (3).

6. UZ'U;] = 0;]0i
In particular., we know that 0;0; = oj0;,. Right-multiplying both sides by o; gives us 0; =

UjUZ'U;]‘ Then left-multiplying both sides by 0;] gives 0;]0i = 00

. 00,510, ' = 03407 i
We begin with o, 07! = 0,07
Then multiply the right hand side by o, +]] 0;+1. which is equal to the identity.
-1 _—1 -1 _—1_—1
9419 = 044119 0i110i+1
Applying relation (4) gives us

11 -1 11
0,410; = 0; 0;110; 0Oi41



Then left-multiplying both sides by o; gives

-1 -1 _ 1 -1
0i9i419; = 044+19; Oitl
as desired.

-1 -1
014107 0 = 0 Uz+10i

-1 _ _-1_-1
We begin with o, 'o;} = 07 "0}

Multiplying the left hand side with UH]U;L]] gives us

S L R |
0i+10410; Oip1 = 03 044

Then using relation (4). we get
UZ-HU;]U;L]]U;] = 0;]0;3]
Then we right multiply both sides by o; to get

-1 -1 _ _—1_-1
Oi+10; Oip1 = 0 0i410i

We have one more relation on braids to present:

Theorem 2.12. The relaticn

1 -1 1 1 _—1 1 -1 1y, —1 _—1 1 -1 1 1
(0p 0p 10, 907 01 10, 50, 10, )(0n710n72”'0—] 01 0y 20, 1)

-1 -1 -1 _-1 1 1 1 -1 -1 1 -1 1 -1 -1
= (0,210, 9" 0] 0] 10,90, 1)(0 Op10p g0 O 0, 90, 10, )

helds

Procf We proceed by induction on n.

Base case: n =2

We claim that (o5 ‘o oy oy ) (o o) = (07 oy ) (05 oy to oy )

We begin with the left hand side:

-1 -1 .-1_-1 -1 -1 _ -1 _-1_-1_-1_-1-1_ -1 -1 _-1_-1_-1_-1_ -1 _-1_-1_-1_-1_-1 __
Oy 01 07 09 01 01 =09 01 09 01 09 01 =09 01 09 Oy 01 Oy =01 0y 01 09 01 Oy =

11 -1 S 1 -1
01 01 09 01 07 09

We see that this is equal to the right hand side.

Now we take the inductive step: Assume that the relation holds for n = k — 1. We will show
that it holds for n = k.

The left hand side is equal to

1 -1 _—1 11 111y, -1 1 11 11
(0 Of_1Op_g 01 01 03 50,10y )(kalaku'”U] Op 090 1)

11 -1 -1 -1 111 11 -1 -1 11
Op Op_10p_o 01 0y "03_90) Op_10) Op g "0y O 0 90 4

We see that o, ! commutes with each element to its right until it reaches o} ',. Thus. we have

11 -1 11 1111 11 111
O Op_10)_g 01 01 0y 90y Oy 10y g "0y O 0 50 0p 4

Similarly. 0,;] commutes with every element to its left until it reaches U,;]r resulting in



1 -1 -1 _-1 1 -1 1 -1 -1 1 -1 1 -1 -1
Op Ok 10 O 901 01 " O 90 1O o' 01 01 "0 o0 Op_4

1 -1 —1 1 11 11 1 11
O 10y (04104 o 07 0y "'0k720k7])(0k72”'01 01

—1y _—1_—1
SO ) 0y Oy
By the inductive hypothesis. the products in the parentheses commute with each other.

11, -1 1 _-1
04 10y (O g 07 0y

~1 11 11 1 -1y -1 1
"'kaz)(akflakff"al 04 "'0k720k7])0k Op_q

Then 0,;] commutes with everything in the product in the leftmost set of parentheses. so we
get

1, -1 11 1 1 -1 -1 11 1 -1y -1 1
Op (0 5 0y 0y "‘kaz)(ak Op_10p—o' 01 04 "'0k720k7])0k Op_q

-1 -1 -1

1
Op_10k_2" 01 04

111 1 11 1 -1 1 -1
SO0y OOy Oy Oy Oy g0 00y, )

Again. 0,;] commutes with everything on its left until it reaches 0,;]]

-1 -1 -1 1 -1 1 _—1 1 -1 -1

- - - ~1
Op_10f_o' 01 01 "0 90y Op 10y Op o071 0

11 -1
0 90 10y

-1 -1 -1

- 1
Op_10f_2 " 01 0

1 1 1 1 7]) -1 -1

- 1 - - 11 -1
C 0 9(03 010y 0 )0 g Oy O Oy 50,0y

We see that this is exactly the right hand side of the relation for n = k.
Thus. the relation holds. O

We note that the argument in this proof does not rely on 1 being in the very center of each
word. Rather. it relies on the indices being exactly adjacent. Therefore. we can obtain similar
relations by adding a single positive integer to all indices in the relation.

Furthermore, we can also commute the terms in parentheses when given a product of the form

-1 -1 -1 _-1 1 -1 _-1 -1 -1 _—1_-1 ~1 -1 -1 -1 _-1 -1 -1

(o 45 On410n Op_10p_2" 01 01 " Op 90y 10y Optq Un+j)(0 10p—2""01 01 " 0p 20,4
. . -1 -1 _ -1 _-1 . . .

by applying the relation o; "0, =0, 0;" for ¢ —j > 1. In particular, we can commute the

second expression in parentheses with the added terms of o}, o,

n+j’
(Onts Onti0, 0,0 ooy o o Yo 0, oy oo o o ) (o, 0 )
Then apply the relation proven above:
(0nt; Opi)o 21002 ooy o o ) (o ooty oo o o o ) (000
Then applying 0;]0;] = 0;]0;] for i — 5 > 1 again. we get
(0,210, 0y or oy oo oy ooy ooy o oo o oo o)

)



3 Relations on the Mapping Class Monoid of the Sphere
with Boundary

This information can be used to find new relations between products of positive Dehn twists on genus
0 surfaces with boundary. One known relation is the lantern relation.

Figure 3.1

Using the labels in the above figure. the lantern relation says that

Ty, T, Ty, Ty, = T,T,T.

where T,, denotes the Dehn twist over the curve o |2]. Since a Dehn twist is a function. this
follows function notation. so such a product of twists is applied from right to left. Furthermore. as
proven in |2].
r.7T,T. =1T,7.T, = T.T,T, # T,T.T,

For the rest of this thesis. we will be presenting relations that are analogous to the lantern
relation in spheres with more boundary components. For clarity. we will use the notation Tj, . s,
to denote the positive Dehn twist over the convex curve containing exactly b,,. ... b,, in its interior.
For example. T, = Tj, 4, Additionally. we will use ‘twist” to mean ‘positive Dehn twist” unless
otherwise specified.

3.1 Relations that hold for general S5y,

We have both general results that hold for all n > 4 and specific results for various values of n. We
will present the general results first.
Let the boundary components of .S,, be labeled as follows:

Figure 3.2

Then. for any 2 < i < n — 1 the following relation holds:

|Tb7iii7]Tl:;7i7] e ngiii]”Tnig e Tl:;i?]Tbn = 7—‘(51-,52-,444-,51') T(bi+1-,bi) o 'T(bi+1-,b1)] e |7—‘(bn711bn72) e T(bn—l-,bl)]

biy1



Procf We will first show that the multiplicities are equal.

Let b; be an interior boundary component.

If j < 4. then on the left hand side. the components of the product involving b; are Tb"fi*]
and T3, T3, is a twist over a curve containing b; because it is a twist that is parallel to the outer
boundary component b,,. so all interior boundary components are contained in it. All components of
the product involve twists over boundary-parallel curves that are not parallel to b;.

Thus. the multiplicity of b is n — ¢ — 1+ 1 = n — ¢ on the left hand side.

On the right hand side. the components involving b; are Ty, 3,5 and the Ty ; contained in
Loy Ty, ] for each k > 4.

We know that there are n — ¢ — 1 values of k that are greater than 7. so the multiplicity of b; is
n—1—14+1=n-u1

Thus. the multiplicities are equal.

Now we will show that the corresponding braids are isotopic.

We will begin by finding the braid corresponding to the left hand side. We note that all twists
except for 7;, are boundary parallel. Because a twist along a boundary parallel curve corresponds
to a braid that demonstrates a swing on the single puncture contained within that curve. it will
not add any crossings to the braid. Therefore, the braid corresponding to 7} is exactly the braid
corresponding to the left hand side.

T, is represented by a swing on all interior boundary components. which looks like this:

Figure 3.3

We note that each strand crosses in front of every strand above it. then crosses behind each again
before returning to its position.
The word that denotes this braid is

-1 -1 lolorlost oot Yoo 11 _-1_-1 1 1

(0,200, 503 o oy loy 0, L0, o) (0,050, s oy toy Toy oy o Lo ) e (og Mo Moy oy ) (o ey )
We will now find the braid corresponding to the right hand side.
Recall that Dehn twists are applied from right to left. Thus. the first portion of the braid will
correspond to [Ty, 6, 1 Thy b, 1]
By Theorem 2.11. the corresponding braid will be denoted by the word

1 -1 _—1 1 1
01 Oy "0y 30, 9

Figure 3.4



Then. applying Theorem 2.11 to each portion in brackets. we see that

|Tbi-,bi+l e Tbl-,bi+1] o |Tbn721bnfl o .Tblabn—l] COI‘I‘eSpOHdS to

oo

111 _—1 1 -1 1 -1 11 _—1_—1 1 1
—3'" 09 01 071 Og "'0n730—n72]"'|0—i 0,109 01 01 O "+ 0; 10; ]

The first two bracketed portions of this braid will look like this:

1 R

| L

| . e
) J
Figure 3.5

This will continue until the 7th strand goes in front of and then behind every strand above it.
Then we apply the final twist. T3, 5, 5. The corresponding braid will depict the swing of each of

the first through the ith strand swinging around each other. This braid is denoted by

-1 11 -1 -1 11 ~1 111 1Ny —1 1
(0171"'01 01 "'Uifl)(0i72”'01 01 "'0122)"'(02 01 01 09 )(01 01 )

Then. putting this together with the first part of the word. we get that the braid is

1 -1 11 -1 _—1 1 1 1 _—1 11 -1 _—1 1 1
(0p 90, 3+ 0y 0] 07 0g "'0n730—n72)"'(0—i O;1'"09 01 01 O 10, 10; )
~1 1 _—1 ~1 ~1 1 -1 -1 111 1y —1 1
(o oy 0y "'Uifl)(0i72”'01 01 "'0122)"'(02 01 01 09 )(01 01 )
This is exactly
1 1 111 -1 1 -1 1 -1 11 -1 1 1 1 11
(0,90, 3 "0y 0 0y 0y ”'0n730—n72)(0—n730—n74'”0—2 01 01 0y "'0n740—n73)"'(0—2 04

which is the word denoting the braid corresponding to the left hand side. Thus. the braids are
isotopic. Therefore, the two products of Dehn twists are equivalent. O

To better understand this type of relation. we can consider the two most extreme cases for the
choice of 7. If ¢ = 2. then the right hand side is a product of twists over all curves that contain
exactly two interior boundary components. If i = n — 2, then the right hand side is the product of all
possible twists over the curves that contain exactly b,,_; and one other interior boundary component.
In both cases. the left hand side is a product of boundary parallel curves. with powers that ensure
that the multiplicity of each boundary component is equal on both sides.

We have an additional general result that rules out the existence of certain relations.

Theorem 3.1. Fcrn > 5, there are nc relations tetween Ty, Ty, -+ Ty, Ty, and any preduct of twasts
cver convex, non toundary parallel curves in the mapping class group of Sy

Prccf We proceed by contradiction. Assume that there is a product of Dehn twists over non bound-
ary parallel curves that is equivalent to Ty, T, -+ T3, 15, Let B {ay.. ... ax} be the set of curves
involved in this product of Dehn twists.

We know that the braid corresponding to 13, Ty, - - - 13, , T, is equivalent to the braid correspond-
ing to T, . As determined above. this is the braid:

oy oy ) (o



Additionally. by Theorem 2.10. the linking number between any two interior boundary compo-
nents is —1. Since the linking number is a braid invariant. this means that each pair of interior
boundary components must have a linking number of —1 under the product of twists over curves in
B. Therefore, again by Theorem 2.10. for any two interior boundary components b; and b;. there
must be exactly one curve a; € B such that both b; and b; are contained in its interior

Furthermore. we see that. under 7,73, - - - T3, _,T},. each boundary component has a multiplicity
of 2. Therefore. for every boundary component b;. there must exist exactly two curves ;. o) € B
such that b; is contained in their interiors.

We claim that. for n > 4. it is not possible to satisfy both conditions.

We will model the situation using a graph. Build a graph G such that each vertex v; represents
the interior boundary component b; in Sg¢".

We will add edges. and colors of edges. to this graph in the following way: There exists an edge
between vertices v; and v; if and only if b; and b; have a linking number of —1. All edges resulting
from a particular curve «; will be the same color. with a distinct color for each «;.

Note that the subgraph of G containing all edges of a particular color. and their adjacent vertices.
must be a complete subgraph. This is because. for any two boundary components b;. b; contained in
a curve ay. the edge between them will be the color corresponding to . There is an edge between
them because ay, is the only curve containing them both. so they have multiplicity —1 resulting from
the twist over «y,. Additionally. we note that the number of colors of edges adjacent to a vertex is
equal to the multiplicity of the corresponding hole.

Then. in order to have a relation with 73,1y, - - 13, 13, . we must have a complete graph (i.e. all
holes have a linking number of —1 with every other hole) and every vertex must have adjacent edges
of exactly two distinct colors (i.e. all holes have a multiplicity of 2). We will show this is not possible
for n > 4.

Let n > 4 and consider the complete graph with n vertices. K,,. Let v; € K,, be given. We know
that v; must have adjacent edges of exactly two distinct colors. Without loss of generality. assume
they are blue and green. Then v; is part of two complete subgraphs. one with blue edges and one
with green edges. Since n > 4. at least one of the subgraphs must contain two vertices other than
v1. Without loss of generality. assume it is the blue subgraph. Let vs. v3 be distinct vertices in the
blue subgraph and let v, be a vertex in the green subgraph such that none are equal to v;.

Vi




Because the graph is complete. we know that there must be an edge between v, and v,. and it
must be a third color. call it red.

Vi

AN
<

)
V3

Figure 3.8

There must also be an edge between vy and v3. and it cannot be blue or green because the two
vertices are not both in either subgraph. Furthermore. it cannot be red because the edge between vy
and wv3 is blue, so the red subgraph would not be complete. Thus. it must be a fourth color. call it

black.

1

v
) < V4
V3

Figure 3.9

Now we see that v, is adjacent to edges of three distinct colors, which contradicts the original
conditions. Therefore. such a graph is not possible. O

Now we can discuss the validity of particular permutations on a relation.

In particular. the following result will show that we can reorder the right hand side of a relation
up to permutation. Furthermore. all boundary parallel curves are disjoint. so the left hand side can
be permuted in any way.

Theorem 3.2. Cn the surface Sgy, gruen its Loundary compenents {by. ... b,} such that b, 1s taken

lc te the cuter tcundary ccmpenent, if there 1s a collection of curves {cy... .. ¢} such that

Tlil Y Tl:lnn:ll Tbn = TC] Y Tck—l Ck
then
Tlf;l ce Tg::lTbn =T, 1, =11, T

Ck—1

Procf We can obtain the second relation by conjuating the first. If we take the top equation and
conjugate both sides by 7¢,. then we have the following:
T, Ty L, T =T, T T, T

We know that Dehn twists over disjoint curves commute |2]. so we can commute 7, with each of
the boundary parallel twists:



Tlil L Tg;n:llTbnT Tfl — 7—,%7—,01 o T T T*]

Ck " cy Ck—1"Ck ¢y

Then T, and T ' cancel each other out on both sides.

7121 o 713::;171"17ﬂ jjil = jinlel RN ¥ jjil

Cx~ ¢y, Cx~ ¢y,

T T T, = T Ty T

Ck—1

as desired. O

We have another strategy to determine which orders of twists will preserve a relation. Recall that
capping refers to the gluing of disks on the interior boundary components along their boundary. If
we are given a relation on Sg, of the form

al Apn—1 _ L
Tb] o Tbn,l Tbn - TC] Tck

then we can take the collection of curves that are used on the right hand side and cap particular
boundary components so that we have three left. and the only curves ¢; that do not go to boundary
parallel curves each contain two of the remaining boundary components. as in the lantern relation.
Then we can label each curve as . y. and z according to the diagram of the lantern relation. In order
to preserve the existing relation. we cannot have the order 7,7.T), or any rotations of this. according
to the lantern relation. If we can reorder the elements of the product of twists on the right hand side
so that these curves are in this order., then we can use capping to make the rest of the strands in
the braids of both sides of this relation in the braid invisible. Then this would imply that T, 7.7, is
equivalent to the lantern relation, because the braid for the left hand side will correspond to T, T, T,
by the lantern relation. This contradicts the fact that T, 7,7, # T,T.T,.

Therefore. we can use capping to rule out potential permutations of the twists in an existing
relation.

Finally. we will show that any relation holds up to isometry. In particular. given a relation
between products of twists over a set of curves. we can perform a reflection or rotation on both sets
of curves curves while keeping the labels on the boundary components fixed by position. and the
products of twists in the same order will preserve the relation.

For example. by the general relation proven above. we have the following relation on 55’10:

2
Loy T, Tos Ty, Ty = Tha baLoo.04 Ly bs Loy b b

involving the set of curves shown below:

Figure 3.10

Then we can perform an isometry on the curves on both sides. The boundary-parallel curves will
not be affected visually. but the curves on the right hand side will look like this:



Figure 3.11

Then. to get an equivalent relation. we can relabel the boundary components in the first relation
so that we are twisting over the images of the curves under this rotation in the same order as in the
original relation.

This gives

2 _
Lo T, Tos T, Tos = Thy bo Ty 5Ty 0s Loo s b4

The following argument explains why relations work up to isometry:

Assume we have a relation. and apply an isometry to the disk. This gives a bijection between
boundary components. giving a relabelling of the boundary components that preserves adjacency
between them.

In particular, the multiplicities under both sides of the relation will be the same for each boundary
component. and the strands in the braid will have the same adjacency. although the order might be
flipped and the strand that is at the top may change. However, the isometry affects both sides of
the relation in the same way. and it will preserve convex curves, so the braids will still be isotopic.
so the relation holds.

In the next sections. we will be classifying relations that exist on spheres with various numbers of
boundary components. up to isometry. with the knowledge that other relations can be derived from
applying an isometry to a surface on which a relation is already defined.



3.2 Relations on the Mapping Class Monoid of 80510

Our aim in this section is to completely describe the relations that exist in the mapping class group of
So.o between products of twists of the form T} T2 Ty Tyt Ty, where each a; is nonzero. and products
of positive Dehn twists over non-boundary parallel curves.
First, we can apply the general relation proven in section 3.1 to Sj, for each possible value of i.
For 1 = 2. we have '

T2 T 10 T2 Toy = | Ty o) Tos.b Do ) | Tog s Tho s T o) (1)

The collection of curves used in the right hand side are shown below:

Figure 3.12

We use color to group the curves corresponding to twists in each set of brackets.

We can also consider permutations of the right hand side and determine which permutations also
satisfy the relation. In particular, Theorem 3.2 gives us a class of additional relations that come
from this one based on permutation of the Dehn twists on the right hand side. Additionally. any two
twists along disjoint curves commute with each other [2].

Additionally. applying Theorems 2.11 and 2.12. we see that each product of twists in brackets
commute with each other.

Conjecture: The cnly valid permutaticns of the twists cn the right hand side of this relaticn can
te derved freom the relaticn given in Thecrem 5 2, the commuting ¢f twists along disjeint curves, and
the permutation of the preducts of twists in trackets

For 7 = 3. we have

Tbl Tb2 Tb3 Tb24 Tbs = Tb3-,b4 Tb2-,b4 Tbl .ba Tbl b2 b3 ( 2)

The collection of curves used on the right hand side is shown below:

Figure 3.13



Now we can consider other possible relations of this type. In particular. we want to find relations
between products of twists of the form

ai a2 a3 rmag
TO TR T T T,

where each a; is a nonzero integer. and products of twists over convex. non boundary parallel
curves.
For any braid of the form T T2 Ty T)"* T, . we know that the corresponding braid will be the one

shown below.
x —/
| \
\

Figure 3.14

In this image. we follow the standard convention of ordering the strands in descending order, with
b; at the top and by at the bottom.

Now we will first consider all possible combinations of twists over non-boundary parallel curves
that will yield this braid.

We will do this by first considering the linking number of each pair of strands. By Theorem
2.10. each pair of strands has linking number —1. Therefore. for any choice of a;’s. if there exists
a relation between T T} T T Ty, and a product of non-boundary parallel twists. then the latter
must correspond to a braid with a linking number of —1 between every pair of boundary components.

In particular. by Theorem 2.10. this means that the product of twists must twist over a set of
curves {cy. .. .. ¢} such that. for any pair of boundary components b;. b;. there is exactly one ¢ such
that both b; and b; are contained in its interior. There are only finitely many ways to choose a set of
curves that follows this restriction. so we consider all possibilities.

Since we are not considering products of twists that include boundary-parallel twists. each curve
¢; must contain at least 2 interior boundary components. Furthermore. any curve containing b. by, b3.
and b, is isotopic to the outer boundary. so. because Dehn twists are well-defined on isotopy classes
of curves. each curve must contain at most 3 boundary components.

One possible choice for the set of curves would be all curves that contain exactly two boundary
components. Relation (1) shown in this section covers this case. so we will consider other possible
cases.

Because all pairs of boundary components must have a linking number of —1. the only other
possible case is one where at least one of the curves in the collection contains exactly three boundary
components.

Up to isometry. this means that we would twist over a curve like this:

Figure 3.15



We note that by. by. and b3 are all contained in the same curve. so we may not include any more
curves containing two of them. Because we are looking for a product of twists that does not include
boundary parallel curves. the rest of the twists must include twists over curves containing exactly
one of the aforementioned boundary components as well as by, Furthermore. each of these curves
must be included in order to have a nonzero linking number for every pair of boundary components.
This gives the collection of curves involved in relation (2) above.

Therefore. up to isometry. (1) and (2) are the only relations of the form specified.

3.3 Considering additional relations in 8810

We can now consider relations between a product of twists over each boundary component at least
once. as well as some number of disjoint non-boundary parallel curves. and products of twists over
only non-boundary parallel curves.

First, we will consider the possibilities for the additional non-boundary parallel curves that will
be used in the former. Any non-boundary parallel curve must contain two or three boundary com-
ponents. There is one option for the curve with three and two options for the curve with two. up to
isometry. Furthermore. if we add twists along multiple non-boundary parallel disjoint curves. there
are two choices for the set of two curves. up to isometry. We show one case below.

Let ¢; and ¢y be as labeled below:

Figure 3.16

We will consider relations with a product of curves of the form T;" TI?QQT%‘TIZ‘*TI,STC]

We know that we can get a relation of the desired form by adding a twist over ¢; at the beginning
of the product of twists on both sides of the previously mentioned relations. and we claim that there
are no relations that do not include a twist over ¢; on both sides.

In particular. we claim that there is no collection of curves {d;.....dy} such that a product of
twists over each d; will give a relation that does not include 7, in the product of only non-boundary
parallel curves.

By Theorem 2.10. under this product of twists. b; and b, have a linking number of —2 and all
other pairs have a linking number of —1.

In order to choose d; so that the product of twists over each d; give the same pairwise winding
numbers. we know that exactly two elements of {d;. . ...d,} must contain both b; and b;. Because
we cannot include ¢; in this set. we know that both of them must contain at least three interior
boundary components. Furthermore. since we are looking for non-boundary parallel curves, they can
contain at most three interior boundary components. There are only two such curves. so both must
be included.

In particular. the two curves are the convex curve containing b;. by. and bs. and the convex curve
containing b;. b3. and by. After twisting along both of these curves. b; will have a linking number
of —2 with b, and —1 with every other boundary component. Additionally. it has a multiplicity of

2. For any twist of the form Ty Ty TP T T, T,,. by has a multiplicity of at least 3 because it is



contained in by. bs. and ¢;. Thus, we must add at least one other curve containing b to {d;. ... .d.}
in order to give it a multiplicity of 3 as well However. since each d; is not boundary parallel. it
must contain another boundary component b;. and this would change the linking number of ; and
b;. which would mean there is no relation.

Therefore. there are no relations of this form.

Now we will consider analogous relations involving T T Ty Ty Ty, T..,.

We will again consider a set of convex. non boundary parallel curves {d;. . ... d} such that twisting
over each will be equivalent to 7' Tlfng;ngi‘*TbsTc?

First. we can apply 7., first on both sides of each of the previous relations.

This gives the relations

Tb21 Tb22 szgTbinS TC2 = Tb1¢b2 |Tb2-,53Tbl-,53] |Tb3-,b4Tb2-,b4Tbl-,b4]TC2

2 _
Tbl Tb2 TbgTb4 Tbs TC2 - Tbg-,b4 Tb2-,b4 Tbl by Tbl ,b2,b3 TC2

Additionally. we can apply the lantern relation just to the region enclosed by cs.

In particular. the lantern relation tells us that the braids for 1y, and Ty, 4,74, 4,154, are isotopic.
Therefore. on the left hand side. we can replace T, with Ty, 4,73, 4,75, 4, and adjust the multiplicities
on the left hand side of each of these relations to get another relation.

3 2 3 3 o
Ty T, T T Tos Ty = Ty by | Too b5 Toy b ]| T s Ton.ba Ty s ) Ty b5 Ty s Ths s

2 2 m3 _
Ly Lo, Ty, T, Tos Ty = Tog by Loy ba Loy b4 Loy 0305 by b5 oy by Tos b4

We note that applying an isometry to one of these relations may yield another relation: however.
we choose to focus on relations that cannot be derived from other relations. In particular, the
second relation here shows a choice of {d;. . ...d,} such that each d; contains exactly two boundary
components. Therefore. we now shift our focus to sets where at least one contains three boundary
components. Up to isometry. we can consider the curve containing by, b3. and b4 to represent this
case. Adding another curve containing three boundary components will either mean that we are
using c¢o or we are adding —1 to the linking number of one of the following pairs: bs and b3 or by and
bsy. This would give a total linking number of —2. which is not equal to their linking number on the
left hand side. Thus. all other curves must contain two boundary components.

In particular. in order to get a linking number of —1 for b, and b3. we cannot add any further
curves containing them both. To get a linking number of —2 for b3 with every other boundary
component. we must include a twist over the curve containing just b3 and b, as well as two twists
over the curve containing b, and b3. Finally. we need to include curves containing b; and each of by
and by.

This yields the following relation:




Figure 3.17

3 2 2 _
Lo Ty Lo, T, Tos Ty = Ty by Lo s s Loy ba Loy s Loy 05 Lo ba Loy s

In the figure above. the dotted line denotes a curve which is used in two Dehn twists.

Now we will consider similar relations, this time with 7" TZZQT;,C;gTﬁTbqu T.,.

As with the other cases. we can derive new relations by applying twists over one or both of ¢;
and ¢, to both sides of the products of twists in the relations shown in section 3.2. as well as the
relations shown above. We will focus on the case where we do not include twists over ¢; or ¢; on the
other side.

In particular. by and by must have a linking number of —3. Since we are not including twists
over ¢; Or ¢y, or over curves containing all four boundary components. the only curve that contains
both b; and by must be the one that also contains b, and not b3. However, twisting over this curve
once will give by and b, a linking number of —1. In order to get to —3. we would have to twist over
this curve three times in total. However. this would cause the linking number of by and b3 to be —3.
Since they should have a linking number of —1. we know that no such relation exists.

Now we can consider the case where ¢; does not contain adjacent boundary components.

Excluding relations derived from those already proven. there are no relations between

I TZZQT%T&“TI,STC] of T} TﬁngfTi‘*TbsTclTCQ and any product of non boundary parallel twists.
This follows from the arguments of the same claims for the case where ¢; contains by and by This is
because the arguments are based on the linking numbers and does not rely on the relative position
of the boundary components.

Because ¢; is the same. we have found all possible relations of the specified type.

3.4 Relations on 880

Now we will classify all relations on the mapping class group of S¢, between products of boundary
parallel twists of the form T;' T, 13T, T Ty, and products of positive twists along non boundary
parallel curves.

We begin by applying the general relation to S5, We will state the relations themselves and
present images of the set of curves involved on the right hand side of each relation.

For 1 = 2. we have

Ty T3, T T T Tog = Tits ) Tts.3) Tt 6) T.60) L1000 T(00.02) T(ba.0) Tibs ) Tbs ) Tt ) (3)

Figure 3.18

Then for + = 3. we have

Tb21 szgszngiTl?sTbG = T(bl -,b2-,b3)T(b3-,b2)T(bg-,bl)T(b4-,bg)T(b4-,b2)T(b4-,bl) (4)



Figure 3.19

Finally. taking ¢ = 4 gives us the relation

TblTbgTbgTb4Tg?5Tb6 = Tty 2.03.60) L(0a.05) L(03.05) L (02.65) L (01.65) (5)

5

Figure 3.20

Now we will consider additional relations. Using the same argument as in the case of Sj,. we
want to find a collection of non boundary parallel. convex curves {c;y.. . ..cg} such that, for any two
interior boundary components 0;. b;. there is exactly one ¢, that contains them both.

In the case that there is at least one curve containing four boundary components. we know that
all other curves must contain two boundary components. Up to isotopy. this is exactly the collection
of curves used in relation (5). Furthermore. relation (3) uses a collection of curves that each contain
exactly two boundary components each. Therefore, we consider the cases where there is at least one
curve with three boundary components. where all others contain two or three boundary components
each.

First, we will consider products of twists involving at least one curve that contains three non-
adjacent holes. Up to isometry. such a curve will look like this:

Figure 3.21

We will now consider the case where there is a second curve containing three boundary compo-
nents. If this curve contains three non adjacent boundary components. then. up to isometry. together
the two curves must be arranged as in the figure below.



Figure 3.22

We see that all boundary components are contained in at least one of the two curves. Therefore.
by the Pigeonhole principle. given any three boundary components. two of them must be contained
in one of the two curves. Therefore. we cannot add any more curves that contain three boundary
components.

In order to ensure that any two boundary components have exactly one curve in common. we
must add the blue curves to this collection:

Figure 3.23

We claim that the following relation involving these curves holds:

Tb21 Tb2T623TbZ4TszTb6 = T(b:a-,bz;)T(bl-,b2-,b4)T(b4-,bs)T(b2-,b3-,b5)T(b1 -,bs)T(bl-,b:s) (6)

Precf First. we note that the multiplicity of each boundary component is equal on both sides.
Then we need only to show that the braids are isotopic.

By the argument in section 3.1. the braid for the left hand side is as follows:
[/

'* -

L

Figure 3.24

The word representing this braid is
-1 -1 1 _—1_—1_—1_-1_—1_—1_—-1_—1_—1_—1_—1_—1_—1_—1_—1_—1_—1

Now we will find the braid for the right hand side.



ST

Figure 3.25

The word denoting this braid is
11 -1 _—1_ 1 _—1_—1_—1_—1_—1_-1_—1_—1_ -1 _—-1_—1_—1
0, 0y 030, 0] 05 05

-1_-1_-1 -1 _-1_—-1_-1_-1 -1 _—
Og 0] 0 020, O3 0y O] 0] 0903040, 05 Oy Oy Oz 0405 Oy Oy O, 05 0y 0

We see that we can perform cancellation using inverses on the portion oy03040; o5 05! which
yields the braid
—1_—1_—1_—1_—1_—1_—1_ 1 _—1_—1_—1

-1 -1 _-1 -1 -1 -1 _-1_-1_—-1_ -1 -1 _—1

Visually. this cancellation will give the braid below:

= B/ —
§ /X —

Figure 3.26

Using the relation o;0; = 0j0; if i — 7 > 1. we get

-1 -1 _-1 -1 -1 -1 _-1_-1_—-1_ -1 -1 -1 -1 _-1_-1_—-1_—-1_—-1_—1 -1 -1 _-1_—

which denotes the braid
==
\ AN —

Figure 3.27

Again. cancellation by inverses gives

-1 _-1_—1 1 -1 _—-1_—-1_-1_-1_—1 -1 -1 _-1_—-1_-1_-1_-1_-1_—1_—1_-1_—

Using 0,0 = o0jo; for i — 37 > 1. we can commute o4 and o,
-1 _-1_-1 -1 -1 -1 -1 -1 _-1 _—1 -1 -1 -1 -1 -1 _-1 -1 -1 _~-1 -1 _-1 -1
-1 -1 _-1
Then we use the fact that o;0;410; = 0,410,0:41 for oy 05 0,



-1 _—-1_-1 -1 -1 -1 _-1_-1 -1 _—-1_ -1 -1 -1 -1 _-1_-1 -1 _—-1 -1 _—-1_—-1_—1

Again. we use the fact that 1 —3 > 1 to commute o5 with o, twice:

1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 _—-1_-1 -1 -1 _—-1_-1_-1_-1_—-1_-—1 -1 -1 _-1_-1_-1_—-1_-1_-1_—-1_-1_-—

Then we apply 0;0;+10; = 0410041 for i = 2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 _-1_-1_ -1_-1_-1_—-1_-1_—-1_-1_-1_ -1 -1 -1 _ -1 _-1_ -1 _—-1_-1 _—1_—1_—
Oy O] 0y 020, 0y O3 Oy 0y O Oy Oy 0405 0y Oy Oy Oy 0y O Oy 05 0y 0]

Finally. we can commute o, ' with o, ! and with o,

1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 _—-1_-1 -1 -1 _-1_-1_-1_-1_—-1_—-1_—1 -1 -1 _-1_-1_—-1_-1_-1_-1_-1_~—

The visual effect of this calculation on the braid is shown below:

1 —r
: /u/ -

Figure 3.28

We can now perform cancellation again:

1

1 -1 _-1_-1_-1_-1_-1_-1_-1_-1_-1_~-1_~-1_-1 -1 _-1_-1_-1_-1_—1
Oy 01 01 04 O3 09 01 01 09 O3 09 0y O3 09 01 01 09 O3 01 03

=

-

Figure 3.29
Repeatedly applying 0;110;0,41 and 0,0; = 0;0; for ¢ — j > 1.we can first get

-1 -1 _-1_-1_—-1_—1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

/ P

Figure 3.30




Applying those relations again. we can get the crossings in the desired order:

lostoy o o oy tos ooy log o tor oy Yoy tog Loy toy oy tar
Oy O3 09 O O Oy O3 04 03 Oy Oy 0 Oy O3 Oy 0] 0y Oy

\ \
| \ \
J x \
/ \

Figure 3.31

This is exactly the braid representing the left hand side. so we are done. O

The other possible case involving a second curve with three boundary components is one where
such a curve contains adjacent boundary components. In particular. it must contain b3 and bs. since
they are the only two boundary components that are outside of the first curve. so the third must be
by.

Visually. two such curves are arranged as shown:

Figure 3.32

Then. in order to satisfy the condition that. for any two boundary components there is exactly
one curve that contains both. we must add the following curves:

Figure 3.33

We have the following relation involving twists over this set of curves:

Tb21 T622T623T54T1725Tb6 = T(bQ-,b:a)T(bl-,b3)T(b3-,b4-,bs)T(b2-,bs)T(bl-,bs)T(bl-,bQ-,bz;) (7)

Procf We see that each boundary component has the same multiplicity on both sides of this proposed
relation. Thus, we need only to show that the corresponding braids are isotopic.



As with all products of twists over boundary parallel curves including exactly one twist over the
outer boundary. the braid corresponding to the left hand side is denoted by the word

1

-1 _-1_-1_-1_-1_-1_-1_-1 -1 -1 _-1_—1_ -1 _-1_—1_-1_-1_—1_-1 -1
Oy O3 0y O O Oy O3 04 O3 Oy 0y O Oy O3 Oy 01 0 Oy 0] 0

The braid for the right hand side is

1 1 1 1 1 1 1 1 1 1 1 1

-1 -1 -1 -1 _-1_ -1 -1 -1 _—1 -1 -1 _—1 _—1 -1 1y -1 -1 -1 _-1_-1 -1 -1 ~1y, 1
O3 0y 01 0y 0y 0301 0y 04 03 0y 01 01 0y (03040, 03 )05 04 05 035 05 0y 01 (0205 )0,

Cancelling out the parts in parentheses gives us

1 1

-1 -1_-1_-1_-1_ -1 -1 -1 _-1_—1_-1_-1 -1 -1 _ -1 -1 _-1_-1_-1_-1 _-—
O3 Oy 0 0 09 030, 0 Oy O3 Oy 0] Oy Oy O3 04 O3 O3 Oy 01 01 Oy

Using relation (3). we can commute o; ' with other elements to get

11 -1 _-1_-1 1 -1, -1 _~1y; -1 1 -1 -1y -1 -1 -1 _-1_-1_—1_-1_-1
03 0y 0 0y 05 030, 03 (0] 0 )(02 01 01 0y )03 04 03 03 09 01 01 0Oy

Using Theorem 2.12. we can again commute products in this word:

11 -1 _-1_-1 11y -1 -1 -1 -1y, =1 -1y -1 _~1 -1 -1 _-1_—1_-1_-1
O3 0y 0] 0y 0y 030, 03 (04 0y 0y 0y )(01 g4 )03 04 03 03 09 01 01 0Oy

Then. commuting (o, 'o; ') with more elements using these two relations again. we get

1 1 1 1 1 1 1 1 1 1 1

11 -1 _—1 _—1 1 -1 -1 -1 -1 -1 -1 -1 _ -1 _—1; -1 -1 1 _~1y;, —1 1
O3 09 07 01 09 030y O3 09 01 01 09 03 0y 03 O3 (0y 0y 01 0y )(01 01)

Using relation (7). we can perform a replacement:

1

1 -1 -1 -1 _-1; —1_~1 1 -1 -1 -1 -1 -1 1 _~1; -1 —1 -1 _~1y; -1 _—-1
03 0y 0 01 0y (04 03 04)05 0y 0] 05 03 0, 03 03 (05 0y 07 0, Joy o)

By commutativity. we can move oy

1 -1 _-1_-1 -1 -1 _-1_-1_-1_-1_—1 111 11 =1 =1 _—1\; . —1 _—1
O3 09 07 01 09 04 03 09 01 01 09 0403 0y 03 O3y (0y 0y 01 0y )(01 01 )

Applying braid relation 7. we get

1 1 1 1 1 1 1 1 1 1 1 1

1 -1 _-1_-1_-1_-1_-1_-1_-1_-1_-1;/ -1_-1 11 -1 -1 _—1 _—1y; -1 _—1
O3 0y 0] 0y Oy 04 03 0y 0 0y 0y (03 04 03)03 o3 (0y 0y 07 0y )(01 01)

Continuing to use the standard braid relations gives us the following lines:

1 -1 -1 _-1 1 -1 -1 -1 _-1_-1_-1_—1 1 -1
o3 (03

1 -1 _~1y.-1 -1 -1 -1 -1 -1 _~1 -1 -1/ —1 -1 _—-1 _~1v; -1 _—1
oy 0y 0y )04 03 0y 0 01 0y 03 04 03 (05 01 01 0y Joy o)

1 1 1

1 1 -1 -1 -1 -1y, -1 -1 -1 -1 -1 —1y -1 —1; -1 -1 _—1 —1y/ -1 _~1
o3 04 (05 01 01 0y )(03 Oy 01 07 09 O3 oy o3 (0y 07 07 0y Joy o)

1 1 -1 -1 _-1 _-1_-1 1 -1 1 1 -1
o3 0y (03

11 -1 -1 _~1yv; -1 1 1 1y 1 1, 1 1 _—1 _—1y; _—1_—1
Oy 01 07 0y O3 )(02 01 01 0Oy )04 O3 (0y 0y 01 0y )(01 01)

1 1 1 1 1 1 1 1 1 1 1 1

1 -1 -1 -1 -1 -1 -1 _~1; -1 -1 _—1 ~1y —1 ~1;, 1 -1 -1 _—~1y; —1 _—1
0y 03 0y 09 01 01 Oy O3 (0y 0y 01 0y )04 O3 (0y 0y 01 0y )(01 01)

1 1 1

1 -1 -1 -1 -1 -1 -1 _~1; -1 -1 _—1 ~1y —1 ~1;, 1 -1 -1 _—~1y; —1 _—1
0y 03 09 01 01 09 04 O3 (0y 0y 01 0y )04 O3 (0y 0y 01 0y )(01 01 )

1 1 1 1 1 1 1 1 1 1 1 1

1 -1 -1 -1 -1 -1 -1 _-1 -1/, -1 _—1 1 _~1y 1, 1 -1 _~1 1y, —1 _—1
04 03 09 01 01 09 04 O3 04 (03 01 01 09 )03 (0y 0y 01 0y )(01 01)

And finally. applying 0;310; ]0;3] =0, ]0;3] o; ! we get the following word:



1

1 -1 -1 -1 -1 -1 -1 -1y/ -1 -1 -1 ~1 —1 -1y -1 -1 -1 _—1y/ —1 —1
(04 0370y 01 01 0y 03 04 )(03 Oy 01 07 0y O3 Joy oy 0y 0y )(0y 0y )

We see that this is equal to the word for the braid corresponding to the left hand side. O

Now we will consider the case where we include two curves containing three adjacent boundary
components. We note that this is the final possible case involving two curves with three boundary
components.

Up to isometry. we can say that one contains b;. by. and bs and the other contains bs. by. and
bs. As described above. the Pigeonhole Principle dictates that all other curves must only contain
two boundary components each. Therefore. the collection of curves corresponding to this case is as
shown below.

Figure 3.34

2 2 2 2 o
Lo T, 1oy T3, Ty, Tog = T(by.69.b5) Los.b4.b5 Los b5 Loy 5 Ly, bs Loy s

Procf We see that each boundary component has the same multiplicity on both sides of this relation.
Thus. we need only to show that the corresponding braids are isotopic.
As with all products of twists over boundary parallel curves including exactly one twist over the
outer boundary. the braid corresponding to the left hand side is denoted by the word
0;]U?:]Uglaf]Uf]05]051011U?:laglaf]0{105]Uglaglaflaflaglaflaf]
Additionally. the word denoting the braid for the right hand side is

1 1 1 1 1 1 1 1 1

-1 -1 _ -1 _-1_— -1 _-1_-1_-— 1 1 1 1 1 1 1 1 1 -1
03 09 01 01 09 030, 05 09 04

—1_—1 —1_—1y -1 _—1_—1_—1_—1_-1_—-1_—1_—
0y 0y (03040, 037 )05 0, 05 05 05 0, 0, 05 0y 04
Cancelling the inverses in parentheses gives
1 -1 _—1_—1 _—1_ 1 _—1_—1_—1_—1_—1_—1_—1_—1_—1 _—1_—1 _—1_—1_—1_—1
04 0y 01 0 Oy 030, 05 0y 01 O Oy Oy 04 Oq O3 0y 01 01 Oy 01 04
In the proof of the previous relation. we saw that this word is equivalent to the word that denotes

the braid given by a twist along the outer boundary.
Therefore. we are done. O

Now we shift our focus to collections of curves where exactly one contains three boundary compo-
nents. Up to isometry. there are two distinct possibilities for such a curve: one that contains adjacent
boundary components and another that contains non-adjacent boundary components. The former
case is addressed by the application of the general relation. so we only consider the latter.

In this case. the collection of curves must be as follows:



Figure 3.35

For this collection of curves. we have the following relation:
22 32 3
Ty, T, T, Ty, Tog Tos = T b Ty by Tog b Tha s Ths b T s Loy bs Ty s b

Procf We see that the multiplicity of each boundary component is equal on both sides. so we only
need to prove that the braids are isotopic.
Recall that we have the relation

T T T o, T2 Tog = Tv.0) T (b .69) T (0555 T3 55) T(1.65) T b1 0.00)

By the lantern relation. if we restrict our consideration of the braid to just the strands 3. 4. and
5. we know that the braid representing Ty, ;, 5, is isotopic to the braid representing Tp, 4,75, .65 Lbs.bs

Thus. because the braid representing T{y, 5,)T(61.55) L (b3.64.65) L (b2.b5) T(b1.65) L (b1.02.54) 15 150topic to the
braid resulting from a Dehn twist along the outer boundary. the braid corresponding to

To.65) L (01 53) T bs Tog b5 Lo s L (02.55) L (b1.65) L (b1.52.04) 15 1SOtODic to the same braid. O

This covers all cases. so we have found all relations between products of boundary parallel twists
of the form Ty'T,>T; T, T, Ty, and products of twists over non-boundary parallel curves, up to
3 4 5 !
isometry and permutations of the products.

3.5 Relations on S

From the relations that were proven for all n > 0. we can say the following relations hold on the
sphere with 7 boundary components:

4 4 4 4 4 4 _
1L, Ty Ly, T T T = Ty 00 Tn 05 Ty 05 Lo ,0a L2600 L1 04 Lo b5 Tos b5 Lo bs Lor b5 Los b6 Loa.bs Lbs.bs Lba.bs Loy b

A
Loy Loy Tog Toy Tos Ty Ty = Ty b9 .b5.04.b5 Los b6 Lo bs Los b6 Lo bs Loy bg

3 3 3 4 4 4 o
Ly 1 Ly T Ty T = Ty b5 Los ba Loba Lo s Loabs Tosbs Lot Ty b5 Ths b s b Lbs,6 L ba.b6 L by b6

2 2 2 2 4 m4 o
Lo T, 10, Lo, T Ty T = Ty g bg.ba Log s Togbs Tog.bs Ty b5 Tos b6 Lo b6 Lbs.b6 Lba b6 Loy g

We will now consider all other collections of curves that. when twisting over each. may give a
relation with a product of twists of the form T T2 Ty T 1> 130T, We know that, for a product
of twists of this form. the pairwise linking number between any two interior boundary components



is —1. Any product of non-boundary parallel twists that is equivalent to such a product must have
the same pairwise linking numbers, so. in particular. we must consider only collections of curves such
that. for any two holes. there is exactly one curve that contains both of them.

We note that. in each case. we are looking for a product of twists that corresponds to a braid
that is isotopic to the braid representing the twist 7},. The word for this braid is

1

1 -1 -1 -1 -1_-1_-1_-1_-1_-1y/.-1 -1 -1 -1 _-1_-1_—-1 _—1
(05 0y 03 0y 01 01 0y 03 04 05 )0y O3 09 07 01 09 O3 0y )

1 1 1

(05105 oy oy oy log ) (o3 o7

orloy oy )(oy o)

We will consider each case by the maximum number of holes contained by any curve. In the case
that one curve contains five boundary components. the only additional curves that may be twisted
over will be the ones that contain the one hole not in the curve and one other boundary component.
This case is covered. up to isometry. by a relation described above.

Now we will consider collections of convex curves where at least one contains four holes. First.
we will discuss the case where the holes contained in this curve are adjacent.

Up to isometry. we are considering the curve shown below:

Because there are six interior holes. all other curves can contain at most three holes. If we twist
over this curve and a curve containing three holes. they may have at most one hole in common.
Therefore. all holes will be contained in one or the other. Thus, by the Pigeonhole Principle. in order
to achieve a linking number of —1 for all pairs of holes. we must only add twists containing at most
two holes.

We will now consider all possible cases involving a curve that contains exactly three boundary
components in its interior. Such a curve may contain adjacent or non adjacent holes.

We begin by considering the case where it contains three adjacent holes. Up to isometry. we can
say that it contains by. bs. and bg. Because any pair of boundary components must have exactly one
curve in common. we know that the whole collection of curves must be as follows:

Figure 3.36

We claim that the following relation involving such a collection of curves holds:

T T3 T3 T, T T3 Tor = Tby s oa) Tbasts ) L(bs.b6) Libs.v) Lt b6) Lita.bs) T(ta.bs) T(ts )

5



Procf We see that the multiplicity of each boundary component is equal on both sides. so we need

only compare the braids.
We will find the braid for the right hand side.
By Theorem 2.11. we can simplify the braid to be

1 1 1 1 1 1 1 1

-1 -1 _-1_-1_-1_-1_—1 -1 -1 _-1_-1_-1_-1_—1_—1 -1 _-1
O, 03 0y 01 0] 0y 03 0405 04 03 0y 01 0 0y 03 (040505 0,°)

-1 _-1_-1_-1_-1_-1_-1_-1_-1_-1_-1_-1_-1_-1_-1_~1
04 05 04 04 O3 0y O O] Oy O3 Oy Oy 0 Oy 0y 0

Note that this is similar to the braid shown in relation (7) on the sphere with 6 boundary
components. Thus. applying the same relations in the same order. we can find this to be equal to

-1 -1 _-1_-1_-1_-1_-1_-1_-1_-1_-1_—-1_-1_-1_-1
0y O3 09 0y Oy Oy O3 05 0y 03 09 01 01 Oy O3

1 1 1 1 1 1

1 -1 -1 -1/ -1 _-1_-1_-1 -1 _~1y/ -1 _—1,_-1_~1y/ —-1_—-1
0404 05 04 0y (03 0y 0] 0 0y 03 )(02 01 01 0y )(01 01 )

1 -1 -1 -1 -1 _-1_-1_-1_-1_-1_~1_-1_-1_—-1_—1
04 03 09 01 0y 09 03 05 04 O3 09 07 01 09 O3

1 1 1 1 1

1 _—1 11y -1 -1 -1 _~1 _~1 _~1y; 1 1 _~1 _—1y, —1 _—1
Oy 05 0404 04 (03 09 01 01 09 O3 )(02 01 01 09 )(01 01 )

-1 -1 -1 _-1_-1_-1_-1_-1_-1_-1_-1_—-1_-1_-1_-1
0y O3 09 0y Oy Oy O3 05 0y 03 09 01 01 Oy O3

1 -1 -1, -1 -1 -1 -1 -1 _~1y/ -1 —1 -1 _—~1y; -1 _—-1
oy 05 04 (03 09 07 07 0y 03 Joy oy oy 0y ) (o) oy )

Again. using the relations used in the proof of relation (7) in an analogous way. we find that this
is equal to

111 =1 —1 -1 —1 -1 _—1 1y, =1 —1 -1 _—1_~-1_—1_—1_-1
(05 04 03 0y 0y 0y 0y 03 04 0 )(oy O3 09 01 01 09 03 04 )

(0505 oo oy oy oy toy to oy ) (o7 tor )

Thus. we are done. O

Now we consider the case where the curve containing three holes contains holes that are not
adjacent. Up to isometry. this is the only possible choice for such a curve:

Figure 3.37

For ease of calculation, we will perform a rotation before presenting the relation:



Figure 3.38

This is the full set of curves that will be included in the product of twists:

Figure 3.39

Using a product of twists over these curves. we have the following relation:

Tb?)l Tng szgTbélTi szaTb7 = T(b2-,b3)T(b1 :b3)7—‘(b3:b4:b51b6)7—‘(b2-,b6)7—‘(b1 -,b6)T(b2-,bs)T(b1 -,bs)T(bl b2 .by)

Procf We see that each boundary component has the same multiplicity. so we show that the asso-
ciated braids are isotopic.
We see that the braid for the right hand side is

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O3 0y 07 0;1051030; 0 04 03 09 07 0;105]030405 04 03 09 01 01 Oy 03 0y 05
—1_ -1 _—1_—1_—1_—1_—1_—1_—1_—1
04 03 03 04 03 03 03 01 01 Oy
Repeatedly applying braid relations 7 and 8. we find that this braid is isotopic to
—1 -1 -1 _—1 _—1_ 1 _—1_—1_—1_—1 _—1_—1 _—1 _—1 _—1_—1 -1 _—1_—1_—1_—1_—1_—1
Oq 0y 01 0] 0y 030, 0y 05 04 Oq 0y 0y Oy Oy Oy 0y 05 04 Oy 0y 01 07 0y
—1_—1_—1_—1_—1_—1_—1_—1
04 0, 03 03 05 0y 0] 0,
Following a similar process again. we get
1 -1 _—1 -1 _—1 -1 _—-1_—-1_—1_—1_—-1_-1_—-1_-1_—1_—1_-1_—1
01 01 05 04 03 03 01 01 0y 03 04 05 04 03 0 01 01 0y
-1 -1 _—1_—1_—-1_—-1_—1_—-1_-1_—1_—1_—1
03 04 O3 O3 01 01 Oy 03 0y 01 01 0Oy

Finally. applying Theorem 2.12, we can rearrange this word into the braid desired:

1 -1 -1 -1 -1_-1_-1_-1_-1_-1y/.-1 -1 -1 -1 _-1_-1_—-1 _—1
(05 0y 03 0y 01 01 0y 03 04 05 )0y O3 09 07 01 09 O3 0y )

1

1 -1 -1 -1 -1 _~1y; -1 —1 -1 _—~1y; -1 _—-1
(03705 01 01 0y 03 Joy oy oy 0y ) (o) oy )



This covers all possible combinations of the chosen curve with four boundary components and a
curve with three boundary components. so the only other case involving this curve is the one given
by additional twists over curves containing exactly two holes. which is covered by the general case.

Now we may consider relations involving one curve that contains four non adjacent holes. First.
we consider the case where such a curve has three holes that are adjacent and one that is not. as in
the figure below:

Figure 3.40

We will now consider the possible curves containing three holes that will not give a linking number
of less than —1 between any two holes. As described above. we know that there may not be more
than one curve containing three holes. so we need only consider the possibilities for one choice of
such a curve.

Furthermore, we know that any additional curve over which we twist must contain by and bg.
because otherwise it would contain two boundary components within the curve pictured above.
which would lead to a linking number of —2 for that pair.

Then the third hole can be by. by. bs. or bs. An isometry will relate the cases involving b; and bs.
so we will only consider the case where b3 is the third hole. The other two cases are distinct and will
also be considered.

In all cases. we know that all other curves over which twists occur must contain exactly two holes.
Thus. for the first case. we have the following collection of curves:

Figure 3.41

We have the following relation involving this set of curves:
2 2 3 2 3
Ty, T3, Tos T, T, Tog Tor = Tbsba) Tib ba) Tlbr 54) T(0.b5) Tb1 b2 b3 65) Ttz b6) T (b5.ba.b6) T(b2.b6) T (b1.66) T(b2.64) Ty b4

For the case where the curve with three holes contains b5. we have the following complete set of
curves:



Figure 3.42

We have the following relation involving such curves:
szlTbZQszfiTlin5Tl?6Tb7 = T(b4-,b3)T(b4-,b2)T(b4-,b1)T(b4-,bs-,b6)T(be-,b3)T(be-,b2)T(b6-,b1)T(bl-,b2-,b3-,bs)

Procf We see that the braid for the right hand side is

1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 _-1_-1_-1_—1_-1_—1 -1 -1 _-1_-1_-1 -1 _-1 -1 -1 -1 -1 _—-1 _—1 _—1 -1 _—1
-1 _-1_-1_-1_—1_-1_-1_-1
04 0y O3 03 01 01 Oy O3
Using cancellation by inverses. we get
0210510510;10;1051U§1040510;10;10510;10;10510;10510510;10;10510510;1051
-1 _-1_-1_-1_—1_-1_-1_—1
04 0, 03 0y 0] 0y 0y O3
Using the commutativity proven in Theorem 2.12 and the identity U;]U;] = U;]U;] if i—j5 > 1.
we get
-1 _-1_-1_-1_—-1_-1_—1 -1 -1 _-1_-1_-1_-1_—-1_-1_-1_—1
O, O3 0y 0] O] Oy O3 0405 04 Oy 0y 0 O] Oy O3 04 O
-1 _ -1, -1 _—-1_-1_—1_—1_—1y, -1 _—1 -1 _—1y, —1 _—1
oy 0y (05 0y 01 0y 0y 05 )(oy 0y 01 05 )(0y 07")

Now. applying braid relations 7 and 8. and rearranging elements that commute. we get

111 =1 —1 -1 —1 -1 _—1 1y, =1 —1 -1 _—1_~-1_—1_—1_-1
(05 04 03 0y 0y 0y 0y 03 04 0 )(oy O3 09 01 01 09 03 04 )

1

1 -1 -1 -1 -1 _~1y; -1 —1 -1 _—~1y; -1 _—-1
(03705 01 01 0y 03 Joy oy oy 0y ) (o) oy )

O

Finally. we consider the case where the curve with three holes contains b, in its interior. Then we
will have the following collection of curves:

Figure 3.43



We suspect that there exist no relations between products of boundary parallel twists and a
product of non boundary parallel curves that includes the blue curve pictured above. However. we
can consider a case where each curve contains the same boundary components. but one or more
curves involved are not convex. In particular. let ¢ be the curve depicted below.

Figure 3.44

Then we will show that the following relation holds:
Tb21 TbQsznginstlijTM = Tb4-,bsTb1-,b2-,53-,bsTbsabeTb3¢b4Tb2-,b4-,b6TCTbl-,baTbl-,b4

Procf We see that the multiplicities are the same.

Furthermore. as mentioned in the proof of Theorem 2.10. every non-convex curve on a convexly
punctured surface is the image of a convex curve under some homeomorphism of the surface.

In this case. we want to find the homeomorphism that takes ¢ to the convex curve containing b3
and bg.

We claim that ¢ = Ty, 4, ((b3. bg)). where (bs. bs) denotes the convex curve containing b3 and bg.

We can show this by taking the Dehn twist. We want to show that c is the image of the blue
curve under a Dehn twist along the green curve.

Figure 3.45
Indeed. we see that a Dehn twist yields

Figure 3.46



This is isotopic to ¢. Because Dehn twists are well-defined on isotopy classes of curves. the claim
is true.

As mentioned earlier, Fact 3.7 from |2] tells us that Ty = foT, o f~! for a homeomorphism on
a surface.

Thus. we can rewrite 7T, = TTbQ‘bG(blabG) = Ty b © Thy b © Tb;,]b(j‘

Now we can find the word for the braid associated with the product of twists:

1 _—1_—1_—1 1 _—1_—1_—1_-1_-1 1 _—1_—1_—1_—1 ~1_—1_—1_—1
(05 05 01 01 0203)(05 0, 05 05 01 01 02030405)(05 04 05 05 0y 030405)(05 0, 05 03 0405)

1 1

(05 01 05 0202030405) (05 07 05 05 0y 0307y ' 05) (05 03 oy a3) (05 05 ) (05 o)

1 1 1 1 1 1 1

1 -1 -1 -1 _-1_—1_—1 11 -1 1y —1 1y, —1 _—1
(04 O3 09 07 01 09 O3 04)(02 01 01 09 )(01 04 )(04 Oy )

Cancelling by inverses. we get

11 -1 _—1 1 -1 -1 -1 _~1_-1_-1_-1_—1 11 -1 1y, —1 _—1
(03 Oy 01 04 0203)(05 04 03 09 01 01 09 03 0y 05)(03 Oy 09 O3 )(05 05 )

1

1 -1 -1 -1 _-1_—1_—1 11 -1 _—1 1y, —1 1
(04 O3 09 07 01 09 O3 04)(02 01 01 09 )(01 04 )(04 Oy )

Now. using braid relation (5). we can commute elements to perform more cancellations:

1 1 1 1 1 1 1 1 ]0_5)(051051)(0§1051051051)

1 1

1 -1 -1 _—1 1 -1 -1 _-1_-1_-1_-1_-1_~—
(03 0y 0y 0 0203)(05 04 03 09 01 01 09 03 04

1 -1 -1 -1 _-1_—1_—1 11y, =1 1 _—1 1y, -1 _—1
(04 O3 09 07 01 09 O3 04)(04 Oy )(02 01 01 0Oy )(01 01 )

Then the cancellation gives:

1 -1 -1 _—1 1 -1 _-1_-1_-1_-1_-1 _-1_-1_~1y/ -1 _-1_-1_-1
(03 0y 0y 0 0203)(05 04 03 09 01 0y 09 03 04 05 )(03 Oy 0y O3 )

1 1 1 1 1 1 1 1

(0105 0y oy oy oy o o )0y o T oy ) (o o )

Finally. using braid relations 7 and 8. as well as 5 to commute terms. we get

1 -1 -1 -1 _-1_-1 -1 -1 -1 _~1y; -1 -1 _—1 _—1_—-1_—1
(05 0y 03 05 01 0y 0y 03 04 05 )(03 Oy 01 07 09 O3 )

1 1

1 -1 -1 _-1_-1 -1 _~1 _~1y/ -1 -1 -1 _~1y/ -1 —1
(04 0370y 01 01 0y 03 04 Joy oy 0y 0y )(0y 0y )

Finally. using Theorem 2.12 and braid relation 5. we can commute the terms in parentheses to
get

111 =1 —1 -1 —1 -1 _—1 1y, =1 —1 -1 _—1_~-1_—1_—1_-1
(05 04 03 0y 0y 0y 0y 03 04 0 )(oy O3 09 01 01 09 03 04 )

1 1 1 1 1 1

(0505 oo oy oy oy toy to oy ) (o7 tor )

as desired. O

We have now considered every possible choice of a curve with three boundary components to be
included in the collection along with the curve containing b;. by. b3, and bs.

The only remaining case for this particular curve with four boundary components is the case
where all other curves contain two boundary components. In such a case. the following relation
holds:

T T3, T Ty, T Ty Tor = To ) Tib.00) Tior 60) Tt 06) T (ba.6) L (13.56) L 12.56) T51.56) T (00.6) T (01.,6.83.05)



Now we will finish our consideration of collections of curves where one contains four boundary
components. Up to isometry. the only other possible curve is the one that contains exactly by. b, by.
and bs.

We suspect that. like the curve above. no product of twists along convex curves including a twist
over this curve will be equivalent to a product of boundary parallel twists. However. we do have a
relation involving twists over non convex curves.

In particular. we claim that the twist over these curves in the following order. together with a
twist over each of the convex curves containing bg and one other interior boundary component. is
equivalent to a twist over boundary parallel curves.

Figure 3.47

More precisely. we label these curves a through f. from left to right. and we claim that the
following relation holds:

T? T T T T2T o Lo, = Ty T Tq T Ty T Ty 6 Thy 06 L6 Lb.06 Ly 06

We will now find the word denoting the braid on the left hand side. In order to do this. we must
first write each non-convex curve as the image of a convex curve under a homeomorphism. As we
did in the case above. it can be verified that the following equalities hold:

Cc= Tb2 ba,bs
d = Ty, p,(
€= Tb4 br (

Then. using the fact that Tp,) = fo T, o f~!. we can rewrite the product of twists on the right
hand side as

-1 -1 -1 -1 -1
Tbl 162:b4-,bsTb4-,bs Tb:a-,bs Tb4,b5Tb4absTb3ab4Tb4,b5 Tb2-,b4-,bsTb2-,b3Tb2,b4,b5 Tb1¢b4-,b5Tb2-,b3Tb1 ,b4,bsTb4:b5:b6Tb3:b6Tb4:b5:b6Tbg,ba

Tbs:bGTb4:b6Tb3:b6Tb2:bGTbl ;b6

_ -1 —1 -1
- Tbl-,b2-,b4-,b5Tb4-,b5Tb3absTb3ab4Tb4,b5Tb2ab4absTb2-,b3 bg,b4,b5Tb1-,b4-,bsTb2-,b3 b1,b4,b5Tb4-,b5-,beTb:a-,baszx-,bs-,beTbg be



Tos.b6 L bs.b6 Lbs.b6 Lo b6 Loy b

The word corresponding to this braid is

(050 o oy oo toy oo oY) (0404)(05040405) (05 oy tog oy togos) (o5 oy o tos ) (o) oy )

(0305 01010203) (0405 "0y o7 oy oy oy oy ) (03 oy oy o) (0 oy oy T oy oy T oss0r )

(05 05 oy 01 0203) (05 '090205) (05 05 ) (0 o5 03 05 030, ) (05 05 05 03)

1

(0404) (05 o3 Vo oy (0404) (0 togtos o) (o o)

(05t ooy oo oy oo o) (0404) (05040405) (05 oy tos tog o tos ) (o o))

(0305 01010203) (0405 "0y o7 oy oy oy oy ) (03 oy oy o) (0 oy oy T oy oy T oss0r )

1 1 1 1 1

(0505 oy o1 0203) (05 ' 020203) (05 05 )0y o5 0y 05 os0y ) (05 05 03 o)

(0404)(05 05" ) (07 05 05 04) (05 oy )

Using the known braid relations. we know that this is isotopic to the braid on the right hand side.

We will now present all relations of the form we are considering which include two curves con-
taining three boundary components. We will present each by first showing the set of curves involved
in the product of twists along non-boundary parallel curves. We can see that each relation gives the
same multiplicity to each boundary component. Furthermore. the braid that corresponds to theleft
hand side of each of these relations is equivalent to that which represents the twist over the outer

boundary. so we need only to show that the right hand sides of each relation correspond to braids
that are isotopic to this braid.

Figure 3.48

3 2 3 3 3 4 o
Ly Lo, T oy T T Tor = Togbs Ty bg.ba Ts by Lo b b5 Loy b5 Tos b6 Lo b6 Los bs Loa b6 Loy b6 Loy b

Procf Applying Theorem 2.11 directly. we see that the word for the right hand side is

—1_—1_-1 11 _—1_—1_—1_—1_—1_—1_—1_—1y —1_—1_—1_—1_—1 11 _—1_—1_—1
(05 0y 0] 03)(05 0, 05 050,01 0y 043 0, 05 )(0, 05 05 07 01 020304)(0, 05 05 05 03 04)

1 Iy —1 1y, =1 1 1 _—1_—1 11y —1 _—1
(03 0y )(04 Oy )(03 Oy 04 09 03)(01 01 )(03 O3 )
1 ~1

Now we can commute elements using the relation 0;]0; =0,

04

o, for i—j >1

1 -1 _—1 1 -1 -1 _-1_-1_-1 -1 -1 -1 -1y, -1 —1 _—1 -1 _~1 1 -1 -1 _—1_-1
(03 07 0y 02)(05 04 03 09 01 01 09 03 0y Opy oy 03 09 07 04 020304) (0, O3 09 0y O3 04)



1 1 1

11y, =1 =1y =1, —1 1 _—1_—1 1 1y, -1 _—1
(04 04 )0 0y )(03 09 01 01 Oy 03)(03 O3 Joy o)
and perform cancellation using inverses:
1 -1 _—1 1 -1 -1 _-1_-1_-1_-1_-1_-1_-1y/.-1 -1 _~1_-1_-1_-1_-1_—1
(0 0y 0y 02)(05 04 03 0y 0y 01 09 03 0y 0Oy ) (o, O3 09 07 07 09 03 0y )
1 -1y, =1 —1 —1 _—1 _~1 _—1y, -1 _—1
(0 0y )(03 09 01 01 Oy O3 Joy o)

Commuting o, with elements whose indices are greater than 1 away from 2 and applying braid
relations 7 and 8 repeatedly. we get

1 -1 -1 -1 -1 -1 -1 -1 -1 _ -1y, .-1_.-1 -1 -1 _-1_-1_—-1 _—1
05 oy O3 O3 o)

1 1

-1 -1 -
04 O3 09

1

01 04

1

Oy 03 Oy

1

(05 Oy 01 07 Og

1

(03 0y oy to05 V(o5 oy oy oy oy T ) (07 oy )

Then. applying Theorem 2.12, we can get the terms in the parentheses in the correct order:

1 -1 -1 -1 _-1_-1_-1_-1_-1_-1y/--1_-1_-1_-1_-1_-1_-1_—1
05 oy O3 O3 oy)

1

-1 _ -1 _—
04 O3 09

1

01 04

1

09
1

O3
1

Oy Oy 01 04

1

(o5 oy

1 -1 -1 -1 -1 _~1y; -1 —1 -1 _—~1y; -1 _—-1
(03705 01 01 0y 03 Joy oy oy 0y ) (o) oy )

Figure 3.49

T T T T T T Tor = T o) Tt 60 T (b ) Tibs.b) T0.02) Tits.0) Tt 6) Tt o) Tss) T (b ) Tt )

Prccf The word for the braid corresponding to the right hand side is

—1_—1_-1 1 _—1_—1_—1_-1_—1 1 _—1_—1_—1_—1_—1
(05 01 01 02)(05 04 05 05 01 01 02030405)(05 0, 03 0y 0y 05 0405)

1 1

(03 oy ) o5 oy lor o5 )0y log oy toy ot oy tog oy ) (o5 oy tar oy oy oy ) (o7 o) (05 o)

Using braid relation 5 to commute elements. and cancelling inverses gives us

1 1

o5 ')

o3 (o7 o)

1 -1 1 -1 -1 -1 _-1_-1_-1 _-1_-1_~—
01 01 02)(05 04 03 09 01 01 09 09 O3 04
1 1 -1 _-1_-1 1 -1 _-1_-1

(03
(05 05 )0y

Similarly to the procedure in the previous proof. use braid relations 7 and 8 and theorem 2.12 to get

11 =11 _—1 _—1 _—1y; =1 -1 1 _—1_—
03 09 01 01 09 03 04 )(03 09 01 01 Oy

1 -1 _-1_-1_-1_~1_-1_-1_-1_-1_—1
(05 04 03 0y 0y 0y 0y 0y 03 04 0 )
1 -1 1 _ 1y, -1 -1 -1 1 1 _~1_—1 _—1y/ -1 -1 _—1_—1 _~1 _—1y; .—1 1
(03 01 01 09 )(04 O3 09 07 01 09 O3 0y )(03 Oy 01 07 09 O3 )(01 01 )
Then we can again apply Theorem 2.12 to get
11 -1 -1 -1 _~-1_-1 -1 _-1 _~1y; -1 1 1 _~1 _~-1_—-1_—1_—1
(05 0y 03 0y 01 01 0y 03 04 05 )0y O3 09 07 01 09 O3 0y )
1 -1 -1 =1 —1 _~1y; =1 —1 1 _~1y; —1 _—1
(03705 0y 01 0y 03 Joy oy oy 0y ) (o 0y )

as desired. O



Figure 3.50

TIiTl?QTl?gTIiTiTl?aTM = 7}53162)T(bg-,61)T(b5-,b4) e T(bs-,bl)T(bs-,56)T(b3ab4abe)ﬂb6:b2)ﬂbeab1)T(bl-,52-,54)

Procf Using Theorem 2.11. we see that the word for the braid corresponding to the right hand side
is

—1_—1_—1_—1_—1 —1_—1y =1 _—1 _—1_—1_—1_—1_—1 —1_—1_—1_—1_—1 —1_—1
(05 05 0y 0y 0y 03)(0y 01 )05 04 05 0y 01 01 0y 030405)(05 0, 05 05 04 05)(05 05 )
1 _ Iy =1 —1 _—1 _—1_—1_—1_—1_—1\  —1_—1_—1_—1
(05705 )0y 05 0y 0y 0y 0y 05 04 )0y 0y 0y 03")

Commuting using braid relation 5 and cancelling inverses gives us
—1_—1_—1_—1_—1 —1 Iy =1 _—1_—1_—1_—1_—1_—1_—1_—1_—1y  _—1_—1
(03705 0y 01 0y 03)(0y 01 )(05 04 05 0y 0y 0y 0y 03 04 05 )(05 03°)
—1_—1_—1_—1_—1_—1_—1_—1y, -1 _—1_—1_—1
(04 035 0y 01 0y 0y 05 0, )(0y 01 0 03 )
Then we can apply braid relations 7 and 8. using 5 to commute. and Theorem 2.12 to get
—1_—1y =1 -1 _—1_—1_—1_—1_—1_—1_—1_—1y  —1_—1_—1_—1_—1_—1
(01 0y )05 04 0570y 07 0y 0y 05 04 05 )(05 05 07 0y 05 05")
—1_—1_—1_—1_—1_—1_—1_—1y, -1 _—1_—1_—1
(04 035 0y 01 0y 0y 05 0, )(0y 01 0 03 )
Then we can apply Theorem 2.12 to commute the portions in parentheses and get
—1 1 _—1_—1_—1_—1_—1_—1_—1_—1y —1_—1_—1_—1_—1_—1_—1_—1
(05704 05 0y 0y 0 0505 0, 05 )(0, 05 05 07 0y 0y 05 04")
—1_—1_—1_—1_—1_—1y —1_—1_—1_—1y  _—1_—1
(05 05 0y 01 0y 03 )(0y 01 01 05 )(o] 07 ")
O

Figure 3.51

3 3 3 2 3 4 .
Tbl TbgTbgTb4Tb5Tb6Tb7 - Tb2-,b3Tb1-,b3Tb3-,b6Tb3-,b4-,bsTb2-,b5Tb1-,bsTbs-,baTbl-,b2-,b4Tb4-,b6Tb2-,beTbl-,b6



Procf Recall that we proved the relation

Ty T T2 T T T3 Tor = Tiba.va) Tibab) Tibao) Libasbs 6) T v6.00) T 6.02) T b.01) T (61,3 5)

Performing an isometry that takes each b; to b;_; for ¢« < 5. and b; to bg. we get the following relation:

2 2 2 3 3
TbaTbl TbQTbgTb4Tb5Tb7 = T(b2-,b3)T(bl-,b3)T(b:a-,66)T(b:a-,bz;-,bs)T(bzbs)T(bl -,bs)T(bs-,be‘)T(bl-,b2-,b4-,b6)

Therefore. the right hand side of this relation corresponds to a braid that is isotopic to the braid
corresponding to any product of twists over boundary parallel curves with exactly one twist over the
outer boundary component.

Furthermore. applying relation (2) from S§, to the subdisk containing b;. by. by. and bg, we see that
the braid corresponding to '

L6y ,b2.ba.bo)

is isotopic to the braid corresponding to
Tbl-,b2-,b4Tb4-,beTb2-,b6Tb1-,b6
Therefore. using the relation derived by an isometry. we know that the braid corresponding to

T(b2-,b3)T(bl-,b3)T(b3-,b6)T(b3ab4-,bs)T(b2-,bs)T(bl-,bs)T(bs-,be)T(b2-,b3-,b4-,b6)

is isotopic to the braid corresponding to

Tb2-,b3Tb1 -,b3Tb3-,beTb3:b4absTb2absTb1 b5 Tb51b6Tbl -,b2-,b4Tb4-,beTb2-,b6Tb1 ,be

which is isotopic to the braid corresponding to the left hand side of the proposed relation.
Therefore. we need only check multiplicity. We see that the multiplicity of each boundary component
is equal on both sides. so the relation indeed holds. O

Figure 3.52

TIiniTé;TbiTl?sTl?eTm = T(bl-,b2-,b4)T(b2-,b3)T(b1-,b3)T(b:a-,bzx)T(bzx-,bsaba)T(b3ab6)T(b2-,b6)T(b1aba)T(b3abs)T(b2:bs)ﬂb1-,b )

5

Procf Recall the earlier relation

3 T, T, T T3 Tt Toe = T bbb Tt ) L) Tt ) T001.6) L) Titm.t) Lo )
This. in particular, implies that the braids corresponding to both sides are isotopic.
Additionally. applying the relation (2) on the mapping class group of 58,0 to the subdisk bounded by
the curve (by. by. by). we can see that the braids corresponding to Ty, by b5.64) A0 T{o; 5y.00) L (69,05) L (b1.65) L (b3.64)
are isotopic.



Therefore. the braid corresponding to the left hand side is isotopic to the braid corresponding to the
right hand side after substituting T(s,.b5.65,6.) With T, 50,60 L (b2.63) T (6:1.65) L (03.6,). This gives the right
hand side of the relation we are claiming to be true.

Since all products of twists boundary parallel curves involving exactly one twist along the outer
boundary have the same braid. we see that the braids for the left hand and right hand side in the
proposed relation are isotopic. Therefore. we need only to check that the multiplicities are the same
for each boundary component. which can be seen easily.

Thus. this relation holds. O

Figure 3.53

Tli Tl?gszngiTl?sTl?aTM = Tb1,bg,b4Tbl-,62Tb2-,b4Tb2-,b3T(b4-,bs-,b6)T(b3-,be)T(b2-,b6)T(b1 -,ba)T(b:s-,bs)T(b2-,bs)T(bl bs5)

Procf As in the previous proof. we will prove this using a previously proven relation.
In this case. we have the relation

2 2 2 3 3
Tb1 szTbgTb4TbsTb6Tb7 = T(bl-,52-,b3-,b4)T(b4-,bs-,b6)T(b3-,b6)T(b2-,ba)T(bl-,b6)T(b3-,bs)T(b2-,bs)T(b1 bs5)

Thus. the braid representing the right hand side of this relation has a braid which is isotopic to the
left hand side of the proposed relation.

Furthermore, by relation (2) on the sphere with 5 boundary components, we know that Tp, p, bs.5,
corresponds to a braid that is isotopic t0 Ty, .64 T1.bsLbs.bsLbs b

Thus. we can substitute this into the above relation to find that

Tbl-,b3-,b4Tb1-,62TbQ-,b4Tb2-,b3T(b4-,bs-,ba)T(b3,b6)7—‘(b2-,b6)T(bl-,ba)T(b:s-,bs)T(b2-,bs)T(b1-,bs)

corresponds to a braid that is isotopic to the desired braid.
Thus. both sides of the proposed relation correspond to isotopic braids. Furthermore. we see that
the multiplicities of the boundary components are the same on both sides. so the relation holds. [

Figure 3.54

T T T T T3 T Ty = T ) Tits. o) Lo o) T 00) L1 52.05) T (ts.56) Lt a.v6) Lt o) Tv.0) L) Tibasn)



Procf We will prove this using another relation. In particular. recall the relation

Tbg] Tbgg szgsz;Tbi szaTb7 = T(b2-,b3)T(bl ¢b3)7—‘(b31b41b51b6)7—‘(b2-,b6)7—‘(b1 -,b6)T(b2-,b5)T(bl -,bs)T(bl ,ba ba)

Using an isometry of relation (2) on the sphere with 5 boundary components. we know that the braid
corresponding to Ty, p, 15 b 1S isotopic to the braid corresponding to Th, p: 16T by s Lbs.b6 Lba.bs
Thus.

Tiby.05) L (61.b3) L0566 Los b Lba.bs Lba.bs L (ba.66) T(61.66) L(b2.65) L (61.65) L (b1.b2.b4)

corresponds to a braid that is isotopic to the desired braid.
Additionally. the multiplicity of each boundary component is equal on both sides. so the relation

holds. O

Figure 3.55

3 3 2 m3 2 4
Ly L o Ty T o Tor = Ty bgbs Ty s Ty 65 Ty 65 T(ba.bs.56) L (0.86) L (02.06) L (b1 66) L(bs.b5) L (b2.65) L (b1 .05)

5

Preocf Recall the relation

2 2 2 3 3
Ly Lo, T, o, Ty Ty Ty = Ty .02.65.60) L(ba,bs.b6) L (03.66) T (b2.06) L(01.,66) T (55.65) L(b2.55) L (b1.65)

Furthermore. using relation (2) on the mapping class group of the sphere with 5 boundary compo-
nents. we can say that the braid corresponding to Ty, p, b,.6,) is isotopic to the braid corresponding
to T52¢53¢54T511b4T51153Tb1-,b2

Thus. the braid corresponding to the left hand side of the proposed relation is isotopic ot the braid
corresponding to

Tb2-,b3-,b4Tb1-,b4Tb1 -,b3Tb1-,b2T(b4-,bs-,b6)T(b3-,ba)T(b2-,b6)T(b1-,b6)T(b3-,bs)T(b2-,bs)T(b1-,bs)

Furthermore, we see that the multiplicities are equal. so the relation holds. O

Figure 3.56

3 3 2 3 2 4 .
Tbl TbgTbgTb4Tb5Tb6Tb7 - Tbl:b21b3Tb3:b4Tb2:b4Tbl-,b4Tb4:b5:b6Tb3ab6Tb2:b6Tbl:b6Tb3:b5Tb2:b5Tb1:b5



Preocf Recall the relation

2 2 2 3 3
Ly Lo, T, o, Ty Ty Ty = Ty .02.65.60) L(ba,bs.b6) L (03.66) T (b2.06) L(01.,66) T (55.65) L(b2.55) L (b1.65)

This tells us that the right hand side of the equation corresponds to a braid that is isotopic to
the braid corresponding to a twist over the outer boundary.

Furthermore. using relation (2) on the sphere with 5 boundary components. we can say that the
braid corresponding to T4, p,.p4.6, 1S isotopic to the braid corresponding to b, by.bs L.ty Lbo.bs Loy by

Therefore. the braid corresponding to

Tbl-,b2-,b3Tb3-,b4Tb2-,b4Tbl-,b4T(b4-,bs-,bG)T(b3-,b6)7—‘(b2-,b6)T(bl-,bG)T(b3:b5)7—‘(b2-,b5)T(bl-,bs)
is isotopic to the braid corresponding to the left hand side of the proposed relation. O

The only other possible collections of curves where two contain three holes will involve a curve of
this shape:

Figure 3.57

As mentioned earlier. we suspect that there exist no relations between products of boundary
parallel curves and products of boundary parallel curves that contain a twist over this curve. However.
we can use the relation

2 2 3 2 3 _
Lo o, 10, Ly, Ty Ty Ty = Ty os Ty o bg.bs Lbs b6 Lbg.04 L bys b6 Le Ty b6 Thy by

where ¢ is as defined earlier in this section. together with relation (2) from the sphere with 5 boundary
components, to derive further relations involving this curve. as we have done with the other relations
in this section.

Future work can be done in finding additional relations involving non-convex curves with twists
that include this curve and the one containing by. by, by. and bs.
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