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Abstract

Motivated by the Cold War of the 20th Century, mathematical models of arms races

focused on bipolar conflicts. These models do not fit to todays multipolar world

consisting of the US with NATO, Russia, and China. In this paper, we extend the

bipolar arms race model of Richardson (1960) to a multipolar arms race model and

relate stability in a bipolar world to stability in a multipolar world. We show that

every bipolar stable solution can be extended to a multipolar stable solution.

Moreover, there are multipolar stable solutions that when restricted to the biopolar

case cease to be stable. We also discuss an alternative interpretation of the model as

arms race with an additional novel weapon system.
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2 Introduction

Prior to the conclusion of the Cold War, the world had been contemplated as only bipolar - having

only two major superpowers that drove world politics and warfare. Previous mathematical model-

ing of warfare has followed this trend, seen in Richardson (1960) and further applications of his work,

such as Smoker (1964). There is substantial literature devoted to discussing the bipolar world, sur-

veyed in O’Neill (1994) and Brito and Intriligator (1995). However, current policy demonstrates that

we no longer reside in a bipolar world, especially not bipolar warfare. Biden’s (2021) "Interim National

Security Strategic Guidance" mentions several countries deemed as aggressive, paying special atten-

tion to Russia and China, saying "We face a world of rising nationalism, receding democracy, growing

rivalry with China, Russia, and other authoritarian states, and a technological revolution that is reshap-

ing every aspect of our lives." Additionally, the prevalence international organizations such as United

Nations and NATO guarantee that a multi-polar scope is needed for future mathematical modeling.

Current events also demonstrate the ongoing prevalence of warfare, particularly discussing the War

on Ukraine. This motivation prompts us to look at an arms race through this multi-polar lens, and to

see how the stability of the arms race is impacted, as well as look at the transition periods when nations

are joining an pre-existing arms race.

3 Model

3.1 Original Richardson Equations

We first will discuss the Richardson (1960) modeling of an arms race. These equations account for

two nations represented by x and y respectively. They assume that growth rate of arms depends on

the amount of armament (eg. bombs, guns, nuclear weapons) possessed by the opposing sides, the
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cost of the armaments, as well as the attitudes towards the other side. These assumptions give us the

following two coupled ordinary differential equations:

d x

d t
= k y −αx + g

d y

d t
= ℓx −βy +h

Here, d x
d t and d y

d t represent the rate at which nations began to arm themselves over time, with x

representing the country A’s armament (number of weapons), and y representing country B’s. The

constants k and ℓ represent each country’s defense coefficient, which is essentially the inclination of

each nation to arm defensively arm itself due to a large amount of weaponry possessed by the other

side. Additionally α and β represent each nation’s expense coefficient, which is defined by how much

the government could fiscally afford as well as the fatigue they would acquire from sustaining such a

large arsenal. This coefficient is negative as it is an depreciation factor, one that decreases that nation’s

spending capabilities. Finally, g and h are the attitudes of each nation to the opposing nation, such as

how they would interact in the context of treaties and trade.

3.2 Discrete Time Version of RichardsonModel

To make our model, we assume time is discrete, as opposed to Richardson’s continuous model. We

make this adjustment due to the nature of arms races, and how they tend to have periods within them,

down to a fiscal spending budget. Additionally, we allow multiple countries to join this arms race.

Our arms race begins with country A and country B, but over time can be expanded to any number of

countries.

3.2.1 Bipolar Model

At t = 1, we have two countries, each of whom is in possession of a powerful weapon, presumably

nuclear technology. Now, before we are able to add in more countries, we must adapt our Richardson

equations to discrete time.

We say that our Richardson equation can be represented as the following

∆w t =
−α κ

ℓ −β

w t +
g

h



This allows us to present our difference equation in its standard form
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wt+1 =Cwt +k

where

wt =
 w t

A

w t
B



w t
A denotes country A’s weapons stock in period t and

k=
 kA

kB

 C1 =
 c A

A c A
B

cB
A cB

B



To reiterate from our derivation, here c A
B and cB

A represent each country’s defense coefficient, or

their inclination to arm themselves with weapons due to the opposing country’s stock of weapons. cB
B

and cB
B represent each country’s expense coefficient, or their fatigue coefficient to maintain their stock

of weapons. Finally, k is equivalent to the nations feelings towards each other at time t.

3.2.2 Multipolar Model

This system will continue, until a new country is able to innovate the same technology as countries

A and B. We expand our difference equations to accommodate for these countries, allowing them to

join the arms race by doing the following:

wt =



w t
A

wB

...

w t
Z

 .

So our system in its entirety is given by a linear system of inhomogenous difference equation

wt+1 =Cwt +k

where

4



k=



kA

kB

...

kZ



Ci =



c A
A c A

B ... c A
Z

cB
A cB

B ... cB
Z

...
...

. . .
...

c Z
A c Z

B ... c Z
Z



For our paper, we will focus on the tripolar model, which describes countries A, B and D

3.3 Restrictions

While analyzing our model, we will apply some restrictions for the sake of simplicity. All diagonal

elements will be negative, because these are fatigue coefficients, the weight of maintaining ones own

armory. As we are only looking at the bipolar and tripolar case, this simply means c A
A < 0,cB

B < 0 and

cD
D < 0. We will assume symmetry, where c A

B = cB
A , as country’s responses should be proportional to

each other. Additionally, we will assume within our matrix k, kA = kB , and kA = kB = ·· · = kZ . Hence,

we will be assuming that each county has equivalent attitudes towards each other, hostile or amiable.

For our analysis, we will be looking at the following two cases, discussing solutions and understanding

the dynamics of the shift from t0 to t1.

C2 =
c A

A c A
B

c A
B cB

B


at T = t0 and

C3 =


c A

A c A
B c A

D

c A
B cB

B cB
D

c A
D cB

D cD
D


at T = t1
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4 Analysis

4.1 Bipolar Model

We begin by discussing our simpler case. Additionally, please note that all solutions must be real

numbers, as we are working with a real-world system. Hence, we have the following case:

C2 =
c A

A c A
B

c A
B cB

B



We are able to find stable solutions when Determinant(C2) > 0 and Trace(C2) < 0. This occurs at

several conditions, which describes a stable state for our system.

We denote this stable set as follows:

Say

S2x2 =
{

(c A
A ,c A

B ,cB
B ) ∈R :


cB

B > 0,0 < c A
A < cB

B ,−
√

c A
A cB

B < c A
B <

√
c A

A cB
B ∨

cB
B > 0,c A

A = cB
B ,−

√
c A

A cB
B < c A

B < 0∨
cB

B > 0,c A
A = cB

B ,0 < c A
B <

√
c A

A cB
B ∨

cB
B > 0,c A

A < cB
B ,−

√
c A

A cB
B < c A

B <
√

c A
A cB

B


}

We also can conclude that we will have a unstable solutions when these conditions are not met, and

that we have both unstable nodes and saddle nodes as possible solutions. This set will be described as

U2x2.

We can also rewrite our system in such a way that allows us to use Rsolve and LinearSolve in Math-

ematica to solve the equation recursively. To do this, we do the following

wt+1 =Cwt +k

wt+1 = (B+ 1)wt +kwt+1 −wt =B+k

Here, B =C2 − 1, where 1 is the Identity Matrix. Our our new equation reads as

wt
2 =

 w t
A

wB

=
1− c A

A c A
B

c A
B 1− cB

B

+
 k

k



By using Linearsolve on wt
2, we find a steady state emerges (given that c A

A ,c A
B ,cB

B ∈ S2x2) at

w t
A = −c A

B k − cB
B k

c A
B

2 − c A
A cB

B

w t
B = −c A

A k − c A
B k

c A
B

2 − c A
A cB

B
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Here, we show an example for stable parameters

c A
A = .4,c A

B = .15,cB
B = .5,k = 100

. We can graph this using Mathematica to show it reach the steady state of w t
A = 366.197 and w t

B =
309.859, which reaches relatively quickly over time.

Figure 1: Stead State Described Above

The real world understanding of the stable solutions makes sense as well. As long as both country

A and B are producing relatively similar, smaller amounts of armaments and the impact of weapons

being made by both countries is below a certain threshold, then the arms race should not prolifer-

ate, and instead reach a stable-state. However, if we do not have this pattern of behavior, instead we

will see a spike in armaments,resulting in an instability between the two counties and spiraling into

proliferation.

4.2 Tripolar Model

We will now be working with the following matrix, which occurs after another country, country D

has entered the arms race.

C2 =


c A

A c A
B c A

D

c A
B cB

B cB
D

c A
D cB

D cD
D

 (1)

From this form, we will again focus on our stable solutions, here dubbed S3x3, which occur when

c A
A ,c A

B ,cB
B ,c A

D ,cB
D ,cD

D lead to both a stable 3x3 system. As this matrix has significantly more variables,

the solutions are more complex. We show the conditions fully described in the Appendix, let us call
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this set of conditions Y and our stable set S3x3, where

S3x3 :=
{

(c A
A ,c A

B ,c A
D ,cB

B ,cB
D ,cD

D , ) ∈R :Y

}

We denote the projR3 S3x3 as the projection of stable solutions of the 3x3 matrix onto parameter of

the 2x2 matrix, ((c A
A ,c A

B ,cB
B ), which allows us to state the following theorem.

Theorem 1. We can say S2x2 ⊂ projR3 S3x3 but projR3 S3x3 ̸⊂ S2x2.

Proof. To show the first part, we can show that there are conditions S2x2 that exist within projR3 S3x3.

We can solve these conditions easily in Mathematica, which tells us as long as one of the following

conditions is met, both our 3x3 and 2x2 matrix will be stable. These conditions are the following:

cB
B > 0,0 < c A

A < cB
B ,c A

A ,−
√

c A
A cB

B < c A
B <

√
c A

A cB
B ,−c A

A − cB
B < cD

D <X

cB
B > 0,c A

A = cB
B ,

√
c A

A cB
B < c A

B < 0,−c A
A − cB

B < cD
D <X

cB
B > 0,c A

B <
√

c A
A cB

B ,−c A
A − cB

B < cD
D <X

cB
B > 0,c A

A > cB
B ,−

√
c A

A cB
B < c A

B <
√

c A
A cB

B ,−c A
A − cB

B < cD
D <X

note: X= cB
B c A

D
2−2c A

B c A
D cB

D+c A
A cB

D
2

−c A
B

2+c A
A cB

B

To prove the second part, we show one of our stability conditions for S3x3. In this case, we will use

the condition that states

c A
A = 0,cB

B ≤ 0,cD
D >−cB

B ,c A
B < 0,c A

D = 0,c A
A < 0,

c A
B

2

c A
A

< cB
B < −c A

A
2 − c A

D
2

c A
A

However, we see for this condition, that cB
B < 0, which violates our any stability condition required

for the 2x2. ■

We will also see that provided stable conditions, this system will reach a steady state as well at

w t
A = −cB

B c A
D k − c A

B cB
D k + c A

D cB
D k + cB

D
2

k − c A
B cD

D k − cB
B cD

D k

cB
B c A

D
2 −2c A

B c A
D cB

D + c A
A cB

D
2 + c A

B
2

cD
D − c A

A cB
B cD

D

w t
B = c A

B c A
D k + c A

D
2k − c A

A cB
D k + c A

D cB
D k − c A

A cD
D k − c A

B cD
D k

cB
B c A

D
2 −2c A

B c A
D cB

D + c A
A cB

D
2 + c A

B
2

cD
D − c A

A cB
B cD

D

w t
D = c A

B
2

k − c A
A cB

B k + c A
B c A

D k + cB
B c A

D k − c A
A cB

D k − c A
B cB

D k

cB
B c A

D
2 −2c A

B c A
D cB

D + c A
A cB

D
2 + c A

B
2

cD
D − c A

A cB
B cD

D
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There remains a lot to be understood about our tripolar perspective, our Theorem has interesting

implications for the real world. This means that a third country can enter an arms race while maintain-

ing stability, though just because we have a stable system when the third country enters does not imply

that the arms race had previously been stable. This tracks historically, as we have nuclear deterrence

as a common threat as more countries can become nuclear capable, hence by the addition of another

county, while armaments are still growing there still can be stability within the system.

To examine the shift of our system from 2x2 to 3x3, we look at the following. This has conditions

c A
A = .4,c A

B = .35,cB
B = .5,cD

A = .2,cD
B = .6,cD

D = .55,k = 10

For the 2x2 system, we can see the dynamics in Figure 2. This shows an arms race that is stable, but

both sides are decreasing their armory, indicating lacking hostility towards each other. However, we

can see in Figure 2 that after this shift takes place, both county A and B have begun producing more

weapons, though they have initially been outpaced country D. While this system still tends to stability,

it is surprising to see the apparent advantage country D is able to have, simply by entering the arms

race. This shift seems relatively smooth, with nothing to indicate any sort of huge incident between

the two, which also is reassuring: countries can come enter the system while the outbreak war is still

avoided.

Figure 2: A Stable 2x2 System showing Country A and B’s weaponry before Country D enters the Arms
Race

Figure 3: A Stable 3x3 System showing Country A, B and D’s weaponry as Country D enters the Arms
Race
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One interesting thing to note is how the variability of the ’friendliness coefficient’ k will impact the

arsenals of each country. Take the following case, where we have c A
A = .4,c A

B = .15,cB
B = .5,cD

A = .9,cD
B =

.9,cD
D = 1. This is shown in Figure 4, where we can see that as friendliness increases, the armaments

decrease, and vice versa, which makes sense with the terms of our model.

Figure 4: The Impact of Varying k on Weapon Stocks

4.3 A Novel Weapons Perspective

While this paper has mostly discussed our model in the context of countries entering an arms race,

we could also see this system as a race between two countries, each of which are adding weapons to

their arsenals over time. We could do this very easily, simply rewriting our system C ′
3, and adding a

subscript on each country to indicate which weapon is being discussed. This gives us

C ′
3 =


c A1

A1 c A1
B1 c A1

A2

c A1
B1 cB1

B1 cB1
A2

c A1
A2 cB1

A2 c A2
A2

 (2)

Here, our new system examines the impact of country A inventing a new weapon, weapon 2, and

accounts for the reactions within the arms race. We will still require the diagonal signs to be negative,

and additionally require c A1
A2 < 0 and c A2

A2 < 0. This is due to the same country having to maintain an

arsenal filled with both weapons. This system has very similar to our previous case, only varying in a

few signs, but an interesting question can emerge: how does the difference between the new weapon

2 and the preexisting weapon 1 impact the stability of the system?

As it turns out, this difference does impact the dynamics of the weaponry, as seen in Figure 5, which

takes place at stable conditions c A1
A1 = .4,c A1

B1 = .15,cB1
B1 = .5,cB2

A2 = .9,c A2
A2 = 1,k = 100. We don’t know

precisely how a new weapon system would impact the system as we don’t have empirical data to cal-

culate the parameter. Here we conduct a sensitivity analysis on the parameter c A2
A1 , by varying it and

seeing how this changes the general weapons stock and steady state of the system. While we can see
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the general weapon stocks are impacted, the long term stability of the system is unaffected by dynam-

ics are impacted by varying c A2
A1 . This is unexpected. We consider c A2

A1 the difference between our first

and second weapon. For example, a sword advancing to a gun would be one transition, but advancing

from an arrowhead to a nuclear warhead differs quite drastically. It’s surprising that we don’t see this

impact the stability of the system, despite how one would intuitively think. This perspective could of-

fer an interesting model to learn more about.

Figure 5: The Impact of Varying c A2
A1 on Weapon Stocks

5 Discussion

This model provides a different perspective on long existing arms race modeling. Like Richardson,

this model doesn’t specifically engage in meticulous plotting of past spending, but aims to give a gen-

eral look into a discrete model of arms races. As technology advances, so does warfare, and gaining in-

sight on the mathematical modeling allows us to learn. A clear question remains about our multipolar

system - specifically regarding the transition period. While we know that it is possible to transition

between a stable bipolar to a stable tripolar, it would be interesting to learn how the system would ad-

apt in cases where many other countries joined, and some would drop out over time. Additionally, we

also can explore this model in terms of inventing new weapons, and perhaps explore how the differ-

ences in weaponry in arsenals can impact each other. This is especially pertinent in the style of modern

warfare, where armories are becoming more optimized.

While we aimed to address critiques that had been given to previous work in modeling of warfare,

this interpretation is not without its weaknesses. In this paper, we were only able to thoroughly ex-

amine one of our base cases, and while we were able to draw some other conclusions from looking

at more complex examples there remains much to be gleaned from them. More thorough numerical
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analysis or further applications can explore adding more nations to the arms race, and also look at the

impact of them leaving. More work could also be done on the novel weapons perspective, to see if

specific parameters could optimize a country’s arsenal. Future iterations could proceed from several

perspectives, and possibly create their own. All in all, our model is a versatile tool that can allow many

interpretations of modern warfare that could use much more fine tuning and analysis.
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Appendix

The full solution for our tripolar 3x3 matrix can be seen below:
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In[1109]:= C3 = {{-c1, c2, c4}, {c2, -c3, c5}, {c4, c5, -c6}};

C3 // MatrixForm;

stablesoln2 = Reduce[ Det[C3] > 0 && Tr[C3] < 0 ];

stablesoln2

Out[1112]= c3 c5 ∈  && c2 < 0 && c4 < 0 && c1 < 0 &&
c22

c1
< c3 <

-c12 - c42

c1
&&

c5 < -
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

-
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
≤ c5 ≤

-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&& c6 >

-c1 - c3 || c5 > -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
|| c3 ⩵

-c12 - c42

c1
&&

c5 < -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c5 ⩵ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

Abs[c1]
&&

c6 > -c1 - c3 || c5 > -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c3 >
-c12 - c42

c1
&& c6 >

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||
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c1 ⩵ 0 && c5 <
c22 c3 - c3 c42

2 c2 c4
&& c6 > -

c3 c42 + 2 c2 c4 c5

c22
||

c5 ≥
c22 c3 - c3 c42

2 c2 c4
&& c6 > -c3 ||

c1 > 0 && c3 ≤
-c12 - c42

c1
&& c6 > -c1 - c3 ||

-c12 - c42

c1
< c3 <

c22

c1
&&

c5 ≤ -
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 ||

-
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
< c5 <

-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c5 ≥ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c3 ⩵
c22

c1
&&

c5 < -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c5 > -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c3 >
c22

c1
&& -c1 - c3 < c6 <

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c4 ⩵ 0 && c1 < 0 &&
c22

c1
< c3 < -c1 && c5 < -

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&&

c6 >
c1 c52

-c22 + c1 c3
|| -

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
≤

c5 ≤
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||
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c5 >
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 >

c1 c52

-c22 + c1 c3
||

c3 ⩵ -c1 && c5 <
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&&

c6 >
c1 c52

-c22 + c1 c3
|| c5 ⩵

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

Abs[c1]
&&

c6 > -c1 - c3 || c5 >
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&&

c6 >
c1 c52

-c22 + c1 c3
|| c3 > -c1 && c6 >

c1 c52

-c22 + c1 c3
||

c1 ⩵ 0 && c3 ≤ 0 && c6 > -c3 || c3 > 0 && c6 > 0 ||

c1 > 0 && c3 ≤ -c1 && c6 > -c1 - c3 || -c1 < c3 <
c22

c1
&&

c5 ≤ -
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||

-
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
< c5 <

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 >

c1 c52

-c22 + c1 c3
||

c5 ≥
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||

c3 ⩵
c22

c1
&& c5 < 0 && c6 > -c1 - c3 || c5 > 0 && c6 > -c1 - c3 ||

c3 >
c22

c1
&& -c1 - c3 < c6 <

c1 c52

-c22 + c1 c3
||

c4 > 0 && c1 < 0 &&
c22

c1
< c3 <

-c12 - c42

c1
&& c5 < -

c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
|| -

c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
≤ c5 ≤
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-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c5 > -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
|| c3 ⩵

-c12 - c42

c1
&&

c5 < -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c5 ⩵ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

Abs[c1]
&&

c6 > -c1 - c3 || c5 > -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c3 >
-c12 - c42

c1
&& c6 >

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c1 ⩵ 0 && c5 ≤
c22 c3 - c3 c42

2 c2 c4
&& c6 > -c3 || c5 >

c22 c3 - c3 c42

2 c2 c4
&&

c6 > -
c3 c42 + 2 c2 c4 c5

c22
||

c1 > 0 && c3 ≤
-c12 - c42

c1
&& c6 > -c1 - c3 ||

-c12 - c42

c1
< c3 <

c22

c1
&&

c5 ≤ -
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 ||

-
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
< c5 <
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-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c5 ≥ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c3 ⩵
c22

c1
&&

c5 < -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c5 > -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c3 >
c22

c1
&& -c1 - c3 < c6 <

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c2 ⩵ 0 && c4 < 0 && c1 < 0 && 0 < c3 <
-c12 - c42

c1
&&

c5 < -
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
||

-
-c13 c3 - c12 c32 - c1 c3 c42

c12
≤ c5 ≤

-c13 c3 - c12 c32 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c5 >
-c13 c3 - c12 c32 - c1 c3 c42

c12
&&

c6 >
c3 c42 + c1 c52

c1 c3
|| c3 ⩵

-c12 - c42

c1
&&

c5 <
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
||

c5 ⩵
-c13 c3 - c12 c32 - c1 c3 c42

Abs[c1]
&& c6 > -c1 - c3 ||

c5 >
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
||

c3 >
-c12 - c42

c1
&& c6 >

c3 c42 + c1 c52

c1 c3
|| c1 ⩵ 0 && c3 > 0 && c6 > -c3 ||
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c1 > 0 && c3 ≤
-c12 - c42

c1
&& c6 > -c1 - c3 ||

-c12 - c42

c1
< c3 < 0 &&

c5 ≤ -
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

-
-c13 c3 - c12 c32 - c1 c3 c42

c12
< c5 <

-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
||

c5 ≥
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c3 ⩵ 0 && c5 < 0 && c6 > -c1 || c5 > 0 && c6 > -c1 ||

c3 > 0 && -c1 - c3 < c6 <
c3 c42 + c1 c52

c1 c3
||

c4 ⩵ 0 && c1 < 0 && 0 < c3 < -c1 && c5 < -
-c13 c3 - c12 c32

c12
&& c6 >

c52

c3
||

-
-c13 c3 - c12 c32

c12
≤ c5 ≤

-c13 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||

c5 >
-c13 c3 - c12 c32

c12
&& c6 >

c52

c3
||

c3 ⩵ -c1 && c5 <
-c13 c3 - c12 c32

c12
&& c6 >

c52

c3
||

c5 ⩵
-c13 c3 - c12 c32

Abs[c1]
&& c6 > -c1 - c3 ||

c5 >
-c13 c3 - c12 c32

c12
&& c6 >

c52

c3
|| c3 > -c1 && c6 >

c52

c3
||

c1 > 0 && c3 ≤ -c1 && c6 > -c1 - c3 || -c1 < c3 < 0 &&

c5 ≤ -
-c13 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||

-
-c13 c3 - c12 c32

c12
< c5 <

-c13 c3 - c12 c32

c12
&& c6 >

c52

c3
||

c5 ≥
-c13 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||
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c3 ⩵ 0 && c5 < 0 && c6 > -c1 || c5 > 0 && c6 > -c1 ||

c3 > 0 && -c1 - c3 < c6 <
c52

c3
||

c4 > 0 && c1 < 0 && 0 < c3 <
-c12 - c42

c1
&& c5 < -

-c13 c3 - c12 c32 - c1 c3 c42

c12
&&

c6 >
c3 c42 + c1 c52

c1 c3
|| -

-c13 c3 - c12 c32 - c1 c3 c42

c12
≤

c5 ≤
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c5 >
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
|| c3 ⩵

-c12 - c42

c1
&& c5 <

-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
||

c5 ⩵
-c13 c3 - c12 c32 - c1 c3 c42

Abs[c1]
&& c6 > -c1 - c3 ||

c5 >
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
||

c3 >
-c12 - c42

c1
&& c6 >

c3 c42 + c1 c52

c1 c3
|| c1 ⩵ 0 && c3 > 0 && c6 > -c3 ||

c1 > 0 && c3 ≤
-c12 - c42

c1
&& c6 > -c1 - c3 ||

-c12 - c42

c1
< c3 < 0 &&

c5 ≤ -
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

-
-c13 c3 - c12 c32 - c1 c3 c42

c12
< c5 <

-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 >

c3 c42 + c1 c52

c1 c3
||

c5 ≥
-c13 c3 - c12 c32 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c3 ⩵ 0 && c5 < 0 && c6 > -c1 || c5 > 0 && c6 > -c1 ||

c3 > 0 && -c1 - c3 < c6 <
c3 c42 + c1 c52

c1 c3
||
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c2 > 0 && c4 < 0 && c1 < 0 &&
c22

c1
< c3 <

-c12 - c42

c1
&& c5 < -

c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
|| -

c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
≤ c5 ≤

-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c5 > -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
|| c3 ⩵

-c12 - c42

c1
&&

c5 < -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c5 ⩵ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

Abs[c1]
&&

c6 > -c1 - c3 || c5 > -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c3 >
-c12 - c42

c1
&& c6 >

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c1 ⩵ 0 && c5 ≤
c22 c3 - c3 c42

2 c2 c4
&& c6 > -c3 || c5 >

c22 c3 - c3 c42

2 c2 c4
&&

c6 > -
c3 c42 + 2 c2 c4 c5

c22
||
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c1 > 0 && c3 ≤
-c12 - c42

c1
&& c6 > -c1 - c3 ||

-c12 - c42

c1
< c3 <

c22

c1
&&

c5 ≤ -
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 ||

-
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
< c5 <

-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c5 ≥ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c3 ⩵
c22

c1
&&

c5 < -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c5 > -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c3 >
c22

c1
&& -c1 - c3 < c6 <

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c4 ⩵ 0 && c1 < 0 &&
c22

c1
< c3 < -c1 && c5 < -

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&&

c6 >
c1 c52

-c22 + c1 c3
|| -

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
≤

c5 ≤
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||

c5 >
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 >

c1 c52

-c22 + c1 c3
||

c3 ⩵ -c1 && c5 <
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&&
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c6 >
c1 c52

-c22 + c1 c3
|| c5 ⩵

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

Abs[c1]
&&

c6 > -c1 - c3 || c5 >
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&&

c6 >
c1 c52

-c22 + c1 c3
|| c3 > -c1 && c6 >

c1 c52

-c22 + c1 c3
||

c1 ⩵ 0 && c3 ≤ 0 && c6 > -c3 || c3 > 0 && c6 > 0 ||

c1 > 0 && c3 ≤ -c1 && c6 > -c1 - c3 || -c1 < c3 <
c22

c1
&&

c5 ≤ -
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||

-
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
< c5 <

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 >

c1 c52

-c22 + c1 c3
||

c5 ≥
c12 c22 - c13 c3 + c1 c22 c3 - c12 c32

c12
&& c6 > -c1 - c3 ||

c3 ⩵
c22

c1
&& c5 < 0 && c6 > -c1 - c3 || c5 > 0 && c6 > -c1 - c3 ||

c3 >
c22

c1
&& -c1 - c3 < c6 <

c1 c52

-c22 + c1 c3
||

c4 > 0 && c1 < 0 &&
c22

c1
< c3 <

-c12 - c42

c1
&& c5 < -

c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
|| -

c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
≤ c5 ≤

-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c5 > -
c2 c4

c1
+
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c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
|| c3 ⩵

-c12 - c42

c1
&&

c5 < -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c5 ⩵ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

Abs[c1]
&&

c6 > -c1 - c3 || c5 > -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c3 >
-c12 - c42

c1
&& c6 >

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||

c1 ⩵ 0 && c5 <
c22 c3 - c3 c42

2 c2 c4
&& c6 > -

c3 c42 + 2 c2 c4 c5

c22
||

c5 ≥
c22 c3 - c3 c42

2 c2 c4
&& c6 > -c3 ||

c1 > 0 && c3 ≤
-c12 - c42

c1
&& c6 > -c1 - c3 ||

-c12 - c42

c1
< c3 <

c22

c1
&&

c5 ≤ -
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 ||

-
c2 c4

c1
-

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
< c5 <

-
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 >
c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
||
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c5 ≥ -
c2 c4

c1
+

c12 c22 - c13 c3 + c1 c22 c3 - c12 c32 + c22 c42 - c1 c3 c42

c12
&&

c6 > -c1 - c3 || c3 ⩵
c22

c1
&&

c5 < -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c5 > -
c2 c4

c1
+

c22 c42 - c1 c3 c42

c12
&& c6 > -c1 - c3 ||

c3 >
c22

c1
&& -c1 - c3 < c6 <

c3 c42 + 2 c2 c4 c5 + c1 c52

-c22 + c1 c3
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