
Spectral Clustering: Preliminaries, Algorithms, and Fairness

Junhui Shen

June 1, 2022

Abstract

Spectral Clustering is one of the most successful clustering methods and has gain great
attention in the study of machine learning. Clustering describes the behaviors of grouping data
points so that those in the same cluster are more similar to each other than to those in different
clusters. The process using the eigenpairs of the Laplacian matrix of a given graph to cluster is
called spectral clustering.

This undergraduate thesis contains three parts. In the first part, we get familiar with the
preliminary knowledge such as the concepts of the Laplacian matrix. In the second part, we study
the algorithms of unnormalized and normalized spectral clustering and realize the advantages
of normalized spectral clustering over unnormalized spectral clustering. Finally, we understand
different versions of fairness along with the theorems and examples and then try to incorporate
the fairness constraints into spectral clustering.

1

Contents

I Preliminaries 4

1 Graph and Laplacian Matrix 4
1.1 Graph Theory . 4
1.2 Laplacian Matrix . 5

2 Connectivity 9
2.1 Connected Graph and Connected Components . 10
2.2 Relationship between Laplacian Matrix and Connectivity 11

3 Relationship between Laplacian Matrix and Sparsest Cut 13

II Spectral Clustering 21

4 Weighted Laplacian Matrix 21

5 Unnormalized Spectral Clustering 23

6 Ratio cut and Unnormalized Spectral Clustering 25

7 Normalized Spectral Clustering 27
7.1 Normalized Laplacian Matrix . 27
7.2 Algorithms . 29

8 Normalized Cut and Normalized Spectral Clustering 32

9 Advantages of Normalized Spectral Clustering over Unnormalized Spectral Clus-
tering 34

III Fairness and Fair Spectral Clustering 37

10 Group Fairness 37
10.1 Definition . 37
10.2 Matrix Representation . 39
10.3 Consistency Analysis . 43

11 Normalized Spectral Clustering with Group Fairness Constraints 44
11.1 Model . 44
11.2 Numerical Experiment . 44

12 Individual Fairness 46
12.1 Definition . 47
12.2 Relationship between Individual Fairness and Group Fairness 49
12.3 Matrix Representation . 51
12.4 Consistency Analysis . 54

2

13 Normalized Spectral Clustering with Individual Fairness Constraints 56
13.1 Model . 56
13.2 Numerical Experiment . 57

IV Appendix 61

A Acknowledgement 61

B K-means Clustering 61

C MATLAB Codes for Different Functions 68
C.1 Similarity Graph: Epsilon-Neighborhood Graph . 68
C.2 Unnormalized Spectral Clustering . 68
C.3 Normalized Spectral Clustering using Lrw . 69
C.4 Normalized Spectral Clustering with Lsym . 69
C.5 Normalized Spectral Clustering with Group Fairness Constraints 69
C.6 Normalized Spectral Clustering with Individual Fairness Constraints 70

3

Part I

Preliminaries
In the first part, we present the preliminary knowledge of spectral clustering. We review different

matrices in the graph theory and introduce the concepts of the Laplacian matrix and its properties.
Then we show how the second smallest eigenvalue of the Laplacian matrix, namely the Fielder value,
is related to the connectivity of the graph.

Following this, we define the density of a cuts and find out the relationship between the minimum
density of all the cuts and the Fielder value of the graph. After that, we give an algorithm using
the density of a cut to bi-partition a graph.

1 Graph and Laplacian Matrix

In the section, we would like to study the degree matrix, adjacency matrix, and incidence matrix
of an undirected graph. Then we show the definition and some basic properties of the Laplacian
matrix.

We use G = (V,E) to represent an unweighted and undirected graph, where V is the set of
vertices with |V | = n and E ⊆ V × V is the set of edges with |E| = m.

Recognition: The definitions of the graph theory mainly come from chapter 10 "Graphs" of [8].
The properties of the Laplacian matrix mainly come from [10].

1.1 Graph Theory

Definition 1.1. The matrix A ∈ Rn×n is the adjacency matrix of G:

aij =

{
1 if (vi, vj) ∈ E
0 otherwise

Definition 1.2. Let el = (vi, vj) ∈ E where i < j. The matrix B ∈ Rn×m is the incidence matrix
of G:

bkl =


1 if vk = vi
−1 if vk = vj
0 otherwise

Definition 1.3. For every vertex vi ∈ V , the degree of vi is the number of incident edges. That is,

di = |{vj ∈ V |(vi, vj) ∈ E}|

The matrix D ∈ Rn×n is the degree matrix of G:

D = diag(d1, . . . , dn)

4

1 2 3

4 5

e1

e2

e3

e4
e5

e6

Figure 1: Graph G = (V,E)

Example 1.1. We can find the degree matrix, adjacency matrix, incidence matrix in the graph
G = (V,E) in Figure 1. The degree of every vertex is

d1 = 2, d2 = 4, d3 = 1, d4 = 3, d5 = 2.

Thus, the degree matrix of G is:

D =


2 0 0 0 0
0 4 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 2


The edges of G are:

e1 = (v1, v2), e2 = (v1, v4), e3 = (v2, v3), e4 = (v2, v4), e5 = (v2, v5), e6 = (v4, v5)

Then the adjacency matrix of G is:

A =


0 1 0 1 0
1 0 1 1 1
0 1 0 0 0
1 1 0 0 1
0 1 0 1 0


The incidence matrix of G is

B =


1 1 0 0 0 0
−1 0 1 1 1 0
0 0 −1 0 0 0
0 −1 0 −1 0 1
0 0 0 0 −1 −1


where the columns of B follow the order of e1, e2, e3, e4, e5, and e6.

1.2 Laplacian Matrix

Definition 1.4. The Laplacian matrix of G = (V,E) is defined by

L = D −A ∈ Rn×n

Definition 1.5. A symmetric matrix M ∈ Rn×n is positive semidefinite (PSD) if any of the
following conditions is true:

5

• xTMx ≥ 0 for every x ∈ Rn. The expression is called the quadratic form of M .

• All eigenvalues of M are nonnegative.

• There exists a matrix U such that M = UUT .

Theorem 1.1. L is symmetric positive definite. Specifically, If x = (x1, . . . , xn)T , then

xTLx =
1

2

n∑
i=1

n∑
j=1

(xi − xj)2

Proof. L = DT −AT = D −A = L, so L is symmetric.
Note that

di =
n∑
j=1

aij =
n∑
j=1

1

We have

xTLx = xT (D −A)x

=
n∑
i=1

dix
2
i −

n∑
i=1

n∑
j=1

xiaijxj

=
1

2
(
n∑
i=1

dix
2
i − 2

n∑
i=1

n∑
j=1

xiaijxj +
n∑
j=1

djx
2
j)

=
1

2
(
n∑
i=1

n∑
j=1

x2
i − 2

n∑
i=1

n∑
j=1

xixj +
n∑
i=1

n∑
j=1

x2
j)

=
1

2

n∑
i=1

n∑
j=1

(x2
i + 2xixj + x2

j)

=
1

2

n∑
i=1

n∑
j=1

(xi − xj)2

Theorem 1.2. λ1 = 0 is the smallest eigenvalue of L and the corresponding eigenvector v1 = 1n
where 1n ∈ Rn is an all-ones vector.

Proof. By Definition 1.1 and Definition 1.3, for every vertex vi ∈ V ,
n∑
j=1

aij = di. Then D1n = A1n.

Thus, we have

L1n = (D −A)1n

= D1n −A1n
= D1n −D1n

= 0n

= 0 · 1n

Therefore, λ = 0 is the smallest eigenvalue, and the corresponding eigenvectors is v1 = 1n.

6

Theorem 1.3.
BBT = L

Proof. L is symmetric since both D and A are symmetric.
Let B be the incidence matrix of G. Then the (ij) entry of BBT is:

(BBT)(ij) =
∑
e∈E

bieb
T
ej =

∑
e∈E

biebje

Suppose i = j. Then biebie = 1 if e is incident to vertex vi and 0 otherwise.
Suppose i 6= j. If e = (vi, vj) ∈ E, we get biebje = (1)(−1) = −1. We get 0 otherwise. Therefore,

(BBT)ij =


di if i =j
−1 i 6= j, (vi, vj) ∈ E
0 otherwise

By Definition 1.1 and Definition 1.3, since L = D −A, we have

lij =


di if i =j
−1 i 6= j, if (vi, vj) ∈ E
0 otherwise

Therefore, for every i, j ∈ {1, . . . , n}, (BBT)ij = Lij .
Therefore, (BBT) = L.

Example 1.2. We continue to study the graph G = (V,E) in Figure 1.
In Example 1.1, we find out D and A of G. We can write the Laplacian matrix.

L = D −A =


2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 1 0 0
−1 −1 0 3 −1
0 −1 0 −1 2


Since L = LT , L is symmetric.
Then we see that L is positive semidefinite using three ways.
First, we check that Theorem 1.1 is satisfied. Let x ∈ R5. Then

xTLx =
[
a b c d e

]


2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 1 0 0
−1 −1 0 3 −1
0 −1 0 −1 2



a
b
c
d
e


= 2a2 + 4b2 + c2 + 3d2 + 2e2 − 2ab− 2ad− 2bc− 2bd− 2be− 2de

= (a− b)2 + (a− d)2 + (b− c)2 + (b− d)2 + (b− e)2 + (d− e)2

≥ 0

Secondly, we see that Theorem 1.2 is satisfied. The eigenvalues of L are

λ1 = 0, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 5

7

with the corresponding eigenvectors

v1 =


1
1
1
1
1

 ,v2 =


1
0
−3
1
1

 ,v3 =


−1
0
0
0
1

 ,v4 =


1
0
0
−2
1

 ,v5 =


1
−4
1
1
1


Lastly, we verify Theorem 1.3. Since we already get B in Example 1.1, we have

BBT =


2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 1 0 0
−1 −1 0 3 −1
0 −1 0 −1 2

 = L

Therefore, L is positive semidefinite.

Definition 1.6. A square matrix A ∈ Rn×n is diagonally dominant if for every i = 1, 2, . . . , n,

|aii| ≥
n∑

j=1,i 6=j
|aij |.

Lemma 1.1. L is diagonally dominant.

Proof. By Definition 1.1 and Definition 1.3, we have

n∑
j=1

aij = di

Since L = D −A, we have: for i = 1, 2, . . . , n,

n∑
j=1,i 6=j

|lij | = |lii|

Therefore, L is diagonally dominant.

1

5 2

4 3

Figure 2: Graph G = (V,E)

8

Example 1.3. The graph G = (V,E) in Figure 2 has the adjacency matrix

A =


0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0


We want to confirm that:

• L is diagonally dominant. (Lemma 1.1)

• λ1 = 0 is the smallest eigenvalue of L and the corresponding eigenvector v1 is a multiple of 1
(Theorem 1.2)

The MATLAB code

format short
A = [0 1 0 0 1;1 0 1 1 1;0 1 0 1 0;0 1 1 0 1;1 1 0 1 0];
D = diag(sum(A,2));
L = D - A
[v,e] = eig(L)

prints the following

L =
2 -1 0 0 -1

-1 4 -1 -1 -1
0 -1 2 -1 0
0 -1 -1 3 -1

-1 -1 0 -1 3
v =

-0.4472 -0.6533 -0.5000 0.2706 -0.2236
-0.4472 0.0000 -0.0000 -0.0000 0.8944
-0.4472 0.6533 -0.5000 -0.2706 -0.2236
-0.4472 0.2706 0.5000 0.6533 -0.2236
-0.4472 -0.2706 0.5000 -0.6533 -0.2236

e =
-0.0000 0 0 0 0

0 1.5858 0 0 0
0 0 3.0000 0 0
0 0 0 4.4142 0
0 0 0 0 5.0000

Therefore, the results are verified.

2 Connectivity

In this section, we see how the eigenvalues of the Laplacian matrix indicate the connectivity of
the graph.

Recognition: The definitions and results mainly come from [10]. The DFS algorithms comes
from [11].

9

2.1 Connected Graph and Connected Components

Definition 2.1. An undirected graph is connected if there is a path to travel between every pair of
distinct vertices. An undirected graph that is not connected is call a disconnected graph.

Definition 2.2. A connected component of an undirected graph is a sub-graph where each pair
of two vertices is connected through a path.

Algorithm. ([11]) The Depth-First Search (DFS) algorithm of an undirected graph G = (V,E)
can be used to identify the connected components of G. The DFS contains as many trees as G has
connected components. Each vertex v ∈ V is assigned an integer label cc[v] between 1 and k where
k is the number of connected components of G such that cc[u] == cc[v] if and only if u and v are
in the same connected component.

Algorithm 1 DFS
Input: Graph G
Output: cc[u] for each u ∈ V
1: for each u ∈ V do
2: color[u] = white
3: end for
4: cc is a new array
5: time = 0
6: k = 0
7: for each vertex u ∈ V do
8: if color[u] = white then
9: k = k+1

10: cc[u] = k
11: DFS_Visit(u)
12: end if
13: end for

Algorithm 2 DFS_Visit
Input: Vertex u
Output: cc[u]
1: color[u] = gray
2: time = time +1
3: d[u] = time
4: for each v ∈ adj[u] do
5: cc[v] = cc[u]
6: if color[v] = white then
7: DFS_Visit(v)
8: end if
9: end for

10: color[u] = black
11: time = time + 1
12: f[u] = time

10

2.2 Relationship between Laplacian Matrix and Connectivity

Definition 2.3. The second smallest eigenvalue λ2 of L is known as the Fielder value of G.

Remark 2.1. By Theorem 1.2, the Fielder value of G is always nonnegative.

Theorem 2.1. If G = (V,E) is disconnected, then L is a block diagonal matrix where each block
corresponds to a connected component of G.

Proof. We run the DFS so that we find the connected components of G and determine the total
number of them.
Then G = G1 ∪G2 · · · ∪Gk where Gi, i = {1, 2 . . . k} is a nonempty connected component. For each
Gi, there exists a corresponding adjacency matrix Ai.
Then

A =


A1

A2

. . .
Ak


There is no edge between each of the connected components, so values outside Ai, i = {1, 2 . . . k}
are all 0.
In addition, the degree matrix D is diagonal where each connected component has a corresponding
degree matrix Di on it.
Hence, L = A−D is a block diagonal matrix.

L =


A1 −D1

A2 −D2

. . .
Ak − Lk

 =


L1

L2

. . .
Lk


Each diagonal block of L, namely Li, corresponds to a connected component. Then each Li has
an eigenvalue 0 with eigenvector 1. Since there are k connected components, the multiplicity of
eigenvalues of L would also be k such that 0 = λ1 = λ2 = · · · = λk ≤ · · · ≤ λn.

Lemma 2.1. Let G = (V,E) be a graph with Laplacian matrix L whose eigenvalue are 0 = λ1 ≤
λ2 · · · ≤ λn. Then G is connected if and only if λ2 > 0.

Proof. ⇐=: λ2 > 0 implies that G is connected.
Suppose G has k ≥ 2 connected components. Then L is a block diagonal matrix, where each block
corresponds to the Laplacian matrix for each component. By stacking 0s and the 1 eigenvector, we
can build k linearly independent eigenvectors of L with eigenvalue 0. Hence, the multiplicity of 0 is
k.
Then λ2 = 0 implies that G is disconnected. λ2 > 0 implies that there is only one connected
component of G.

=⇒: G is connected implies λ2 > 0.
Let G be a connected graph. Let u be an eigenvector of L with the eigenvalue 0. Then u 6= 0. By

Theorem 1.1, uTLu = 1
2

n∑
i=1

n∑
j=1

(ui − uj)2. Since Lu = 0, we get 0 = uTLu = 1
2

n∑
i=1

n∑
j=1

(ui − uj)2.

This implies that ui = uj for every (vi, vj) ∈ E. Since G is connected, there is a way to walk from
v1 to any other vertex vj along edges of G. If ui = c, c ∈ R, then uk = c because we can always find

11

a path from vertex vi to vertex vk. Then u = c1. Since u 6= 0, u1 6= 0 and every eigenvector of 0
is a multiple of 1. Then the multiplicity of eigenvalue 0 is 1. Additionally, λ2 6= λ1 where λ1 = 0 .
Since L is positive semidefinite, all its eigenvalues are nonnegative. We get that λ2 > 0.

1 2 3

4 5

6

10 7

9 8

Figure 3: Graph G = (V,E)

Example 2.1. The graph G = (V,E) in Figure 3 is a disconnected graph with 2 connected com-
ponents. The left-hand component corresponds to Example 1.2, and the right-hand connected
component corresponds to Example 1.3. We have found out the Laplacian matrix and the corre-
sponding eigenvalues and eigenvectors of each connected component. This time we want to confirm
that L is a block diagonal matrix and that the Fielder value of G is 0.
The MATLAB code

format short
A1 = [0 1 0 1 0;1 0 1 1 1;0 1 0 0 0;1 1 0 0 1;0 1 0 1 0];
A2 = [0 1 0 0 1;1 0 1 1 1;0 1 0 1 0;0 1 1 0 1;1 1 0 1 0];
A = blkdiag(A1,A2);
D = diag(sum(A,2));
L = D - A
e = eig(L)

printed the following

L =

2 -1 0 -1 0 0 0 0 0 0
-1 4 -1 -1 -1 0 0 0 0 0
0 -1 1 0 0 0 0 0 0 0

-1 -1 0 3 -1 0 0 0 0 0
0 -1 0 -1 2 0 0 0 0 0
0 0 0 0 0 2 -1 0 0 -1
0 0 0 0 0 -1 4 -1 -1 -1
0 0 0 0 0 0 -1 2 -1 0
0 0 0 0 0 0 -1 -1 3 -1
0 0 0 0 0 -1 -1 0 -1 3

e =

12

-0.0000
-0.0000
1.0000
1.5858
2.0000
3.0000
4.0000
4.4142
5.0000
5.0000

Therefore, L is a block diagonal matrix with eigenvalues λ1 = λ2 = 0.

3 Relationship between Laplacian Matrix and Sparsest Cut

In this section, we give the definition of the density of a cut and relate the Fielder value to the
minimum density of all the cuts. After that, we introduce an algorithm so that we can break a
graph into two clusters.

Recognition: The definitions and results mainly come from [11].

Definition 3.1. Let A ⊂ V \ ∅ be a subset of vertices and Ā = V \ A. A cut induced by A is a
partition of V into two sets: A and Ā.

Definition 3.2. The density of a cut induced by A is

φ(A, Ā) = n · |E(A, Ā)|
|A| · |Ā|

where E(A, Ā) = {(vi, vj) | vi ∈ A, vj ∈ Ā}.

Definition 3.3. Let φG = min
A⊂V \∅

φ(A, Ā) denote the minimum density of all the cuts. A cut with

density φG is called the sparsest cut.

Definition 3.4. For any subset A ⊂ V \ ∅, cA ∈ Rn is a characteristic vector of A:

cAi =

{
1, if vi ∈ A
0, otherwise

6

5 4

7 8

1

23

910

Figure 4: Graph G = (V,E)

13

Example 3.1. Consider the graph in Figure 4. Suppose we choose A = {v1, v3, v5, v7, v9}.
The characteristic vector is cA =

[
1 0 1 0 1 0 1 0 1 0

]
.

Then E(A, Ā) = {(v1, v2), (v2, v3), (v1, v10), (v9, v10), (v1, v6), (v4, v5), (v5, v6), (v6, v7), (v7, v8)}.
The density of this cut is

φ(A, Ā) = n · |E(A, Ā)|
|A| · |Ā|

= 10 · 9

5 · 5
= 10 · 9

25
=

18

5

In comparison, we can choose A = {v4, v5, v6, v7, v8}.
The characteristic vector is cA =

[
1 1 1 0 0 0 0 0 1 1

]
.

Then E(A, Ā) = {(v1, v6)}.
The density of all the cut is

φG = φ(A, Ā) = n · |E(A, Ā)|
|A| · |Ā|

= 10 · 1

5 · 5
=

2

5

The density using A = {v4, v5, v6, v7, v8} is much smaller than using A = {v1, v3, v5, v7, v9}.

Definition 3.5. A vector x ∈ Rn is non-constant if it is not a multiple of 1, i.e., x 6= c1, c ∈ R.

For x = (x1, . . . , xn), we define the function

Q(x) = n ·

∑
(vi,vj)∈E

(xi − xj)2

∑
1≤i<j≤n

(xi − xj)2

Remark 3.1. In Theorem 1.1, we show that xTLx = 1
2

n∑
i=1

n∑
j=1

(xi − xj)2.

Then

n ·
∑

(vi,vj)∈E

(xi − xj)2 = n · 1

2

n∑
i=1

n∑
j=1

(xi − xj)2 = n · xTLx

Also,
∑

1≤i<j≤n
(xi − xj)2 = xTLKnx where LKn is the Laplacian matrix of the complete graph

with k vertices.
Since we can express every cut of A in the form of cA, φG = min{Q(x) | x ∈ {cA | A ⊂ V \ ∅}.

If we try to to find φG of a graph by computing φG = min{Q(x) | x ∈ {cA | A ⊂ V \ ∅}}, we
need to check 2n − 2 cA’s where |V | = n.

For instance, to find φG in Example 3.1, , we need to compute 210 − 2 = 1022 c′As. It is not a
practical way to find φG.

Thus, we need to relax the problem. We instead minimize Q(x) over all non-constant vectors
x ∈ Rn,x 6= c1. Let µ = min{Q(x) | x ∈ Rn,x 6= c · 1}.

The procedure is called a relaxation as we allow more vectors to be plugged in, namely from the
characteristic vectors cA to all non-constant vectors.

We show that φG ≤ λ2 where λ2 is the Fielder value of G. The idea is that we first show µ is
no greater than φG, and then we show that µ is equivalent to the Fielder value.

Lemma 3.1. Let µ = min{Q(x) | x ∈ Rn,x 6= c · 1}. Then µ ≤ φG.

14

Proof. Since we are doing a relaxation on the allowable vectors, we minimize over a larger set than
what we are supposed to. Then

µ = min{Q(x) | x ∈ Rn,x 6= c · 1} ≤ min{Q(x) | x ∈ {cA|A ⊂ V \ ∅}} = φG

Lemma 3.2. Q(x) = Q(x + t1) for every t ∈ R.

Proof.

Q(x) = n ·

∑
(vi,vj)∈E

(xi − xj)2

∑
1≤i<j≤n

(xi − xj)2

= n ·

∑
(vi,vj)∈E

[(xi + t)− (xj + t)]2∑
1≤i<j≤n

[(xi + t)− (xj + t)]2

= Q(x + t1)

Thus, Q(x) = Q(x + t1) for every t ∈ R.

Lemma 3.3. µ = min{Q(x) | x ∈ Rn \ {0},1Tx = 0}

Proof. Let x ∈ Rn be arbitrary. We can write it as x = c1+1⊥, c ∈ R. Then Q(x) = Q(c1+1⊥) =
Q(1⊥) because Q(x) = Q(x + t1).
Thus, µ = min{Q(x) | x ∈ Rn \ {0},1Tx = 0}.

We see another way to approach µ above. Instead of checking all non-constant vectors, we can
reduce the range of the vectors that we look for. Next, we seek for a more efficient way so that we
can get µ even without knowing Q(x).

Lemma 3.4. The Laplacian matrix of a complete graph LKn is:

LKn = nIn − Jn

where Jn = 1 · 1T ∈ Rn×n.

Proof. For a complete graph, the Laplacian matrix is

DKn =

n− 1 . . . 0
...

. . .
...

0 . . . n− 1

 , AKn =


0 1 1 . . . 1
1 0 1 . . . 1
...

...
. . .

...
...

1 1 . . . 0 1
1 1 . . . 1 0



LKn =


n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
...

...
. . .

...
...

−1 −1 . . . n− 1 −1
−1 −1 . . . −1 n− 1


15

Also , we have

nIn − Jn =

n . . . 0
...

. . .
...

0 . . . n

−
1 . . . 1
...

. . .
...

1 . . . 1

 =


n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
...

...
. . .

...
...

−1 −1 . . . n− 1 −1
−1 −1 . . . −1 n− 1


Thus, LKn = nIn − Jn.

Corollary 3.1. Jnx = 0.

Proof. Since 1Tx = 0, we get

Jnx =

1 . . . 1
...

. . .
...

1 . . . 1


x1

...
xn

 =

1
Tx
...

1Tx

 = 0

Corollary 3.2. xTLKnx = n ‖x‖2

Proof. By Lemma 3.4, LKn = nIn − Jn. By Corollary 3.1, Jnx = 0. Then

xTLKnx = xT (nIn − Jn)x

= xTnInx− xTJnx

= nxTx− xTJnx

= nxTx

= n ‖x‖2

Corollary 3.3. Q(αx) = Q(x) where α ∈ R \ {0} .

Proof.

Q(αx) = n · αxTLαx

αxTLKnαx

= n · α2xTLx

α2xTLKnx

= n · xTLx

xTLKnx

= Q(x)

Lemma 3.5. µ = min{xTLx | ‖x‖ = 1,1Tx = 0}.

16

Proof. By Corollary 3.2, xTLKnx = n ‖x‖2. Then

Q(x) = n ·

∑
(vi,vj)∈E

(xi − xj)2

∑
1≤i<j≤n

(xi − xj)2
= n · xTLx

xTLKnx
= n · x

TLx

n ‖x‖2
=

xTLx

‖x‖2

Then

µ = min{Q(x) | x ∈ Rn \ {0},1Tx = 0} = min{x
TLx

‖x‖2
| x ∈ Rn \ {0},1Tx = 0}

By Corollary 3.3, Q(αx) = Q(x) where α ∈ R \ {0}. Clearly, ‖x‖2 is a scalar.
Thus,

µ = min{xTLx | ‖x‖ = 1,1Tx = 0}

Let v1 = 1,v2, . . . ,vn be a set of orthonormal eigenvectors of the Laplacian matrix L corre-
sponding to the eigenvalues 0 = λ1 ≤ λ2 ≤ . . . λn. We finally show that µ = λ2 so that λ2 ≤ φG.

Lemma 3.6. If 1Tx = 0, then x = α2v2 + α3v3 . . . αnvn = 0 where αi ∈ R for every i = 1, . . . , n.

Proof. Let 1Tx = 0. Let v1, . . .vn be a set of orthonormal eigenvectors of L corresponding to the
eigenvalue λ1 = 0, λ2, . . . , λn.
Then v1

Tv2 = 0,v1
Tv3 = 0, . . . ,v1

Tvn = 0.
Then v1

T (α2v2 + α3v3 · · ·+ αnvn) = 0 where αi ∈ R for every i = 1, . . . , n.
Since v1 = 1, we have 1T (α2v2 + α3v3 · · ·+ αnvn) = 0.
Thus, 1Tx = 0 implies that x = α2v2 + α3v3 · · ·+ αnvn.

Lemma 3.7. Let 1Tx = 0 and ‖x‖ = 1. Then x =
n∑
i=2

αivi with
n∑
i=2

α2
i = 1.

Proof. By Lemma 3.6, since 1Tx = 0, we have x = (α2v2 + α3v3 . . . αnvn) =
n∑
i=2

αivi, αi ∈ R for

every i = 1, . . . , n. Then

x · x = ‖x‖2

= (α2v2 + α3v3 + · · ·+ αnvn)T (α2v2 + α3v3 + · · ·+ αnvn)

= α2
2 + · · ·+ α2

n

=
n∑
i=2

α2
i

= 1

Hence,
n∑
i=2

α2
i = 1.

Therefore, x =
n∑
i=2

αivi with
n∑
i=2

α2
i = 1.

Lemma 3.8. xTLx = α2λ2 + · · ·+ α2
nλn where x =

n∑
i=2

αivi.

17

Proof. Let x =
n∑
i=2

αivi. Note that Lvi = λivi for i = 2, 3, . . . , n where λi ∈ R. Also, viTvi = 1.

Then we have:

xTLx = (α2v
T
2 + α3v

T
3 + . . . αnv

T
n)L(α2v2 + α3v3 + . . . αnvn)

= α2
2v

T
2 Lv2 + α2

3v
T
3 Lv3 + · · ·+ α2

nv
T
nLvn

= α2
2λ2v

T
2 v2 + · · ·+ α2

nλ2v
T
nvn

= α2λ2 + · · ·+ α2
nλn

Theorem 3.1. µ = λ2 < φG where λ2 is the Fielder value of G.

Proof. Recall that by Lemma 3.5, µ = min{xTLx | ‖x‖ = 1,1Tx = 0}.
By Lemma 3.1, we have µ ≤ φG, so we only need to show that µ = λ2.

• µ ≥ λ2

By Lemma 3.7, we see that x =
n∑
i=2

αivi with
n∑
i=2

α2
i = 1.

By Lemma 3.8, we have xTLx = α2λ2 + · · ·+ α2
nλn where x =

n∑
i=2

αivi.

Combining the above, since λ2 ≤ λ3 ≤ · · · ≤ λn, we have

xTLx = α2
2λ2 + · · ·+ α2

nλn ≥ λ2 ·
n∑
i=2

α2
i = λ2

Thus, µ = min{xTLx | ‖x‖ = 1,1Tx = 0} ≥ λ2.

• µ ≤ λ2

By Lemma 3.8, we have xTLx = α2λ2 + · · ·+ α2
nλn where x =

n∑
i=2

αivi.

We can choose α2 = 1, α3 = 0, . . . , αn = 0.
Then xTLx = α2

2λ2 = λ2.
Since λ2 ∈ {xTLx| ‖x‖ = 1,1Tx = 0} , we have µ = min{xTLx | ‖x‖ = 1,1Tx = 0} ≤ λ2.

Since µ ≥ λ2 and µ ≤ λ2, we conclude that µ = λ2.
Therefore, λ2 ≤ φG.

Algorithm. We introduce the algorithm to break a graph into 2 main clusters using the eigen-
vector corresponding to the Fielder value of G.

Algorithm 3 Clustering using the eigenvector corresponding to the Fielder value of G
Input: Graph G
Output: 2 clusters of G
1: Compute the Laplacian matrix L.
2: Compute the Fielder value of G and the corresponding eigenvector w.
3: Sort the components of w in descending order so that wi1 ≥ wi2 · · · ≥ win
4: Partition G with the cuts: Ak = {vi1 , vi2 . . . , vik} for k = 1, . . . , n− 1.
5: Output Ai that induces smallest density among Ak, k = 1, . . . , n− 1

18

1 2

4 3

5

9

6

8 7

Figure 5: Graph G = (V,E)

Example 3.2. We use G = (V,E) in Figure 5 as an example to demonstrate the algorithm.
The MATLAB code

format short
A = [0 1 1 1 0 0 0 0 0; 1 0 1 1 1 0 0 0 0;1 1 0 1 0 0 0 0 1;

1 1 1 0 1 0 0 0 0; 0 1 0 1 0 1 1 1 1; 0 0 0 0 1 0 1 0 0;
0 0 0 0 1 1 0 1 0; 0 0 0 0 1 0 1 0 1;0 0 1 0 1 0 0 1 0];

D = diag(sum(A,2));
L = D - A;
[v,e] = eig(L);
w = v(:,2); %the eigenvector corresponding to the Fielder value of G
[out,index] = sort(w)

printed the following

index =

1
3
4
2
9
5
8
7
6

This means that w6 ≥ w7 ≥ w8 ≥ w5 ≥ w9 ≥ w2 ≥ w4 ≥ w3 ≥ w1.
Then A1 = {v6}, A2 = {v6, v7}, A3 = {v6, v7, v8}, A4 = {v6, v7, v8, v5}, A5 = {v6, v7, v8, v5, v9}, A6 =
{v6, v7, v8, v5, v9, v2}, A7 = {v6, v7, v8, v5, v9, v2, v4}, A8 = {v6, v7, v8, v5, v9, v2, v4, v3}.
We calculate the density of every Ai and compare. Then we pick one Ai such that the density of
the cut it induces is the minimum among all Ai’s.

φ(A1, Ā1) = 9 · 2

1 · 8
=

9

4
, φ(A2, Ā2) = 9 · 3

2 · 7
=

27

14

φ(A3, Ā3) = 9 · 3

3 · 6
=

3

2
, φ(A4, Ā4) = 9 · 3

4 · 5
=

27

20

φ(A5, Ā5) = 9 · 3

5 · 4
=

27

20
, φ(A6, Ā6) = 9 · 5

6 · 3
=

5

2

19

φ(A7, Ā7) = 9 · 4

7 · 2
=

18

7
, φ(A8, Ā8) = 9 · 3

8 · 1
=

27

8

Thus, we can choose a cut between A4 = {v5, v6, v7, v8} and Ā4 = {v1, v2, v3, v4, v9} to get the
relatively small density.

20

Part II

Spectral Clustering
Given a set of vertices in an undirected graph, we can classify them via certain features to

put relatively well-connected vertices within a group and those that are not so well-connected into
the rest. For instance, assume we have a social network graph with people as vertices and an
edge between people who have the same living habits. Then we may cluster these people by their
nationality or gender identity. The actions of such classifications are called clustering. If we use
the eigenpairs of the Laplacian matrix of the graph to cluster, then the process is called spectral
clustering.

There are two kinds of spectral clustering, corresponding to different types of Laplacian matrices:
unnormalized spectral clustering and normalized spectral clustering. Additionally, we use ratio cut
and normalized cut to convert different spectral clustering methods into standard minimization
problems. We further figure out that that normalized spectral clustering using the random walk
normalized Laplacian matrix is better than using the other Laplacian matrices.

4 Weighted Laplacian Matrix

At this stage, we need to extend our knowledge on the graph theory to have the prerequisite for
further studying spectral clustering.

In the section, we will study concepts related to the weighted graph as well as the definition and
the properties of the Laplacian matrix.

Recognition: The definitions and results on the weighted graph and the Laplacian matrix mainly
come from chapter 2 of [4].

Definition 4.1. An undirected graph G = (V,E,W) is a weighted graph if V is the set of vertices
with |V | = n, W is a symmetric matrix such that wij ≥ 0 for every i = 1, . . . , n and j = 1, . . . , n
and wii = 0 for every i = 1, . . . , n. Also, (vi, vj) ∈ E if and only if wij > 0.

Remark 4.1. We can consider W as a weighted adjacency matrix.

Definition 4.2. For every vertex vi ∈ V in graph G = (V,E,W), the degree of vi is defined by

di =
n∑
j=1

wij

The degree matrix D ∈ Rn×n of G = (V,E,W) is:

D = diag(d1, . . . , dn)

Definition 4.3. The Laplacian matrix of G = (V,E,W) is:

L = D −W ∈ Rn×n

Definition 4.4. Given any subset of nodes A ⊆ V , the volume of A is:

vol(A) =
∑
vi∈A

di

21

Definition 4.5. Given any two subset A,B ⊆ V , we define links between A and B as

links(A,B) =
∑

vi∈A,vj∈B
wij

Remark 4.2. Since the matrix W is symmetric, links(A,B) = links(B,A).

1 2 3

4 5

1

7 6

10

4

5

Figure 6: Graph G = (V,E,W)

Example 4.1. We can find out W , D and L of the undirected but weighted graph G = (V,E,W)
in Figure 6. Note that if all the weights of the edges are 1, then the graph is unweighted, which is
Figure 1. The weighted adjacency matrix W is

W =


0 1 0 7 0
1 0 10 6 4
0 10 0 0 0
7 6 0 0 5
0 4 0 5 0


The degree matrix D is

D =


8 0 0 0 0
0 21 0 0 0
0 0 10 0 0
0 0 0 18 0
0 0 0 0 9


The Laplacian matrix L = D −W is

L =


8 −1 0 −7 0
−1 21 −10 −6 −4
0 −10 10 0 0
−7 −6 0 18 −5
0 −4 0 −5 9


Let A = {v1, v2}.
Then vol(A) = d1 + d2 = 8 + 21 = 29.
Then links(A, Ā) = w14 + w24 + w25 + w23 = 7 + 6 + 4 + 10 = 21.

Theorem 4.1. [4] The Laplacian matrix L = D −W is symmetric positive semi-definite. Specifi-
cally,

xTLx =
1

2

n∑
i=1

n∑
j=1

wij(xi − xj)
2

22

Proof. Since both D and W are symmetric, L = D −W is symmetric.
For all x ∈ Rn, we have

xTLx = xTDx− xTWx

=

n∑
i=1

dix
2
i −

n∑
i=1

n∑
j=1

xixjwij

=
1

2
(

n∑
i=1

dix
2
i − 2

n∑
i=1

n∑
j=1

xixjwij +

n∑
j=1

djx
2
j)

=
1

2
(

n∑
i=1

n∑
j=1

x2
iwij −

n∑
i=1

n∑
j=1

2xixjwij +
n∑
i=1

n∑
j=1

x2
jwij)

=
1

2

n∑
i=1

n∑
j=1

(x2
iwij + 2xixjwij + x2

jwij)

=
1

2

n∑
i=1

n∑
j=1

wij(xi − xj)2 ≥ 0

Therefore, L is symmetric positive semidefinite.

5 Unnormalized Spectral Clustering

We have introduced the basics of the Laplacian matrix. However, there are two questions we
may ask:

1. If the data set is so large enough that manually drawing the graph and computing the Laplacian
matrix becomes complicating, then what do we do?

2. In Algorithm 3, we use the Laplacian matrix to bi-partition the graph. Is it possible to
partition the graph into more clusters with the Laplacian matrix?

The goal of this section is to find ways to address the two problems. To answer the first question,
we use the similarity matrix to represent the graph and get the Laplacian matrix. To answer the
latter, we use a method called the spectral clustering.

Similarity Graph. Given data points x1, . . . , xn, we want to have some measurement of similarity
between every pairs of data points xi and xj so that we can divide the graph into several clusters
so that points in the same group are similar in some sense, and dissimilar points in different groups
are dissimilar.

While implementing the similarity graph, we have to make sure that the points considered as
similar by the similarity function are closely related in the application of the actual data points.

There are several ways to reformulate data points into similarity graphs. Here we introduce the
concept of the ε-neighborhood graph.

Definition 5.1. ([9]) The similarity matrix S ∈ Rn×n induced by the ε-neighborhood graph is:

sij =

{
1, if ‖xi − xj‖ < ε, vi 6= vj

0, otherwise

23

Remark 5.1. One practical problem with the ε-neighborhood graph is that it is sometimes difficult
to find a proper ε > 0 in the figure if different parts of the figure contains different distances between
the data points.

Remark 5.2. If we use the similarity matrix S induced by the ε-neighborhood graph, then the
corresponding Laplacian matrix is usually sparse.

Algorithm We now state the algorithm of the unnormalized spectral clustering.

Algorithm 4 Unnormalized Spectral Clustering
Input: similarity matrix S ∈ Rn×n, number k of clusters we want
Output: k clusters of the data points
1: Compute the Laplacian matrix L
2: Compute the first k eigenvectors u1, . . . ,uk of L
3: Let U ∈ Rn×k be the matrix containing the vectors u1, . . . ,uk as columns.
4: Let yi ∈ Rk be the vectors correspoinding to the ith row of U , i = 1, . . . , n .
5: Cluster the points yii, i = 1, . . . , n in Rk with the k-means clustering into clusters C1, . . . , Ck.

How do we choose k? Ideally, we want to have k clusters such that the first k eigenvalues of the
Laplacian matrix λ1, λ2, . . . , λk are relatively small, but λk+1 are relatively large. The multiplicity
of the eigenvalue λ = 0 may help give us an estimation of k.

Remark 5.3. ([9]) The k-means step is not forced. We can also use other techniques to construct
the final solution from the real-valued representation.

Remark 5.4. ([9]) The speed of convergence of spectral clustering depends on the size of eigen-
gap, ∆k = |λk − λk+1|. The larger the eigengap is, the faster the algorithm computing the first k
eigenvectors converge.

Example 5.1. We now generate data from two half-moon shapes. We want to see how we can use
the unnormalized spectral clustering to correctly identify the two clusters.

Recognition: We use the MATLAB code for the two-moons function provided on the website:
https: // www. mathworks. com/ help/ stats/ label-data-using-semi-supervised-learning-techniques.
html . The MATLAB code

rng("default")
[X,label] = twomoons(500);
epsilon = 0.3;k = 2;

S = similarity(X,epsilon);
idx1 = my_unnormalized_sc(S,k);

figure
gscatter(X(:,1),X(:,2),idx1,"rb");
legend("cluster 1","cluster 2","cluster 3")
title("unnormalized spectral clustering")

printed the following

24

https://www.mathworks.com/help/stats/label-data-using-semi-supervised-learning-techniques.html
https://www.mathworks.com/help/stats/label-data-using-semi-supervised-learning-techniques.html

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5
unnormalized spectral clustering

cluster 1

cluster 2

Figure 7: Unnormalized spectral clustering

6 Ratio cut and Unnormalized Spectral Clustering

In this section, we introduce the concept of the ratio cut and see how it is related to unnormalized
spectral clustering.

Definition 6.1. Given a clustering V = C1 ∪ · · · ∪ Ck, the ratio cut function is:

RatioCut(C1, . . . , Ck) =
k∑
l=1

cut(Cl, C̄l)

|Cl|

where |Cl| is the number of vertices in Cl and

cut(Cl, C̄l) =
∑

vi∈Cl,vj∈C̄l

wij

Remark 6.1. For a clustering V = C1∪· · ·∪Ck, we explicitly request that the clusters C1, C2, . . . , Ck
are relatively large so that they do not contain only a few data points.

Definition 6.2. ([9]) Given a partition of V into k clusters C1, . . . , Ck, we define the unnormal-
ized cluster indicating vectors hl ∈ Rn, l = 1, 2, . . . , k such that

hil =


1√
|Cl|

, if vi ∈ Cl

0, otherwise
(6.1)

Let H ∈ Rn×k be the matrix where H =
[
h1, . . . ,hk

]
.

Proposition 6.1. ([9]) H is an orthogonal matrix, i.e., HTH = I ∈ Rk×k.

Proof. Let (HTH)uv denote the (uv)-entry of (HTH).

(HTH)uv =

n∑
i=1

hiuhiv

25

• Suppose u = v.
Then hiuhiv = (hiu)2 = (1√

|Cu|
)2 = 1

|Cu| if vi ∈ Cu and 0 otherwise.

Then (HTH)uu =
n∑
i=1

hiuhiv =
∑

vi∈Cu

1
|Cu| +

∑
vi 6∈Cu

0 = 1.

• Suppose u 6= v.
Then hiuhiv = (0)(1√

|Cv |
) = 0 if vi ∈ Cv, and hiuhiv = (1√

|Cu|
)(0) = 0 if vi ∈ Cu.

Then (HTH)uv =
∑

vi∈Cu

0 +
∑

vi∈Cv

0 = 0.

Therefore, HTH = I ∈ Rk×k.

Proposition 6.2. ([9])

(HTLH)ii = hTi Lhi =
cut(Ci, C̄i)

|Ci|

Proof. By Theorem 4.1 and Equation (6.1),

hTi Lhi =
1

2

n∑
x=1

n∑
y=1

wxy(hxi − hyi)2

=
1

2

∑
x∈Ci,y∈C̄i

wxy(hxi − hyi)2 +
1

2

∑
x∈C̄i,y∈Ci

wxy(hxi − hyi)2

=
1

2

∑
x∈Ci,y∈C̄i

wxy(
1√
|Ci|
− 0)2 +

1

2

∑
x∈C̄i,y∈Ci

wxy(0−
1√
|Ci|

)2

=
1

2

∑
x∈Ci,y∈C̄i

wxy
1

|Ci|
+

1

2

∑
x∈C̄i,y∈Ci

wxy
1

|Ci|

=
∑

x∈Ci,y∈C̄i

wxy
1

|Ci|

=
cut(Ci, C̄i)

|Ci|

Hence, we have

RatioCut(C1, . . . , Ck) =

k∑
i=1

hTi Lhi =

k∑
i=1

(HTLH)ii = Tr(HTLH)

Thus, the problem of minimizing RatioCut(C1, . . . , Ck) is the same as:

min
H is of form (6.1)

Tr(HTLH) subject to HTH = I ∈ Rk×k (6.2)

According to section 5.1 and section 5.2 of [9], this is NP-hard. Hence, we relax the problem
by allowing the entries of the matrix H to take arbitrary real values. Then the relaxed problem
becomes:

min
H∈Rn×k

Tr(HTLH) subject to HTH = I ∈ Rk×k (6.3)

26

By section 5.2 of [9], it turns out that the trace minimization problem can be solved if we choose
H that contains the first k eigenvectors of L as columns, which is the same as the matrix U in
Algorithm 4. Thus, we first compute H by computing the first k eigenvectors of L and then apply
k-means clustering to the rows of H. This leads to the unnormalized spectral clustering.

7 Normalized Spectral Clustering

We have introduced the idea of the unnormalized spectral clustering. Naturally, we would think
that there is a method called the normalized spectral clustering. To understand the normalized
spectral clustering, we have to first understand some basic concepts on the normalized Laplacian
matrix.

In this section, we focus on the the normalized Laplacian matrix and the normalized spectral
clustering.

7.1 Normalized Laplacian Matrix

Let D−α = diag(d−α1 , . . . , d−αn) where α ∈ R.

Definition 7.1. ([9]) Given a graph G = (V,E,W) with no isolated vertex, the symmetric nor-
malized Laplacian matrix Lsym and the random walk normalized Laplacian matrix Lrw
are defined by

Lsym = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2

Lrw = D−1L = I −D−1W

Remark 7.1. Lsym is a symmetric matrix because

(Lsym)T = (D−
1
2LD−

1
2)T = (D−

1
2)TLT (D−

1
2)T = D−

1
2LD−

1
2 = Lsym

Remark 7.2.

Lrw = D−1L

= D−
1
2 (D−

1
2LD−

1
2)D

1
2

= D−
1
2LsymD

1
2

Example 7.1. In Example 1.1 and Example 1.2, we figure out D,A, and L of the graph G in
Figure 1. We have

D =


2 0 0 0 0
0 4 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 2

 , L =


2 −1 0 −1 0
−1 4 −1 −1 −1
0 −1 1 0 0
−1 −1 0 3 −1
0 −1 0 −1 2


Then

D−
1
2 =


1√
2

0 0 0 0

0 1
2 0 0 0

0 0 1 0 0
0 0 0 1√

3
0

0 0 0 0 1√
2

 , D−1 =


1
2 0 0 0 0
0 1

4 0 0 0
0 0 1 0 0
0 0 0 1

3 0
0 0 0 0 1

2


27

Therefore,

Lsym = D−
1
2LD−

1
2 =


1 − 1

2
√

2
0 − 1√

6
0

− 1
2
√

2
1 −1

2 − 1
2
√

3
− 1

2
√

2

0 −1
2 1 0 0

− 1√
6
− 1

2
√

3
0 1 − 1√

6

0 − 1
2
√

2
0 − 1√

6
1



Lrw = D−1L =


1 −1

2 0 −1
2 0

−1
4 1 −1

4 −1
4 −1

4
0 −1 1 0 0
−1

3 −1
3 0 1 −1

3
0 −1

2 0 −1
2 1


Theorem 7.1. ([9]) For every x ∈ Rn, we have

xTLsymx =
1

2

n∑
i=1

n∑
j=1

wij(
xi√
di
− xj√

dj
)2

Proof.

xTLsymx = xT (I −D−
1
2WD−

1
2)x

=
n∑
i=1

x2
i −

n∑
i,j=1

xi√
di
wij

xj√
dj

=
1

2
(
n∑
i=1

x2
i − 2

n∑
i=1

n∑
j=1

xiwijxj√
di
√
dj

+
∑

j = 1nx2
j)

=
1

2
(
n∑
i=1

n∑
j=1

wij
di
x2
i − 2

n∑
i=1

n∑
j=1

xiwijxj√
di
√
dj

+
n∑
i=1

n∑
j=1

wij
dj
x2
j)

=
1

2
(

n∑
i=1

n∑
j=1

wij(
xi√
di

)2 − 2
xiwijxj√
di
√
dj

+ wij(
xj√
dj

)2)

=
1

2

n∑
i=1

n∑
j=1

wij(
xi√
di
− xj√

dj
)2

Theorem 7.2. ([9]) λ is an eigenvalue of Lrw with eigenvector v if an only if λ is an eigenvalue
of Lsym with eigenvector w = D

1
2v.

Proof.
Lsym(D

1
2v) = λ(D

1
2v)

D−
1
2LD−

1
2D

1
2v = D

1
2λv

D−
1
2 (D−

1
2LD−

1
2)D

1
2D

1
2v = λv

D−1LIv = λv

(D−1L)v = λv

Lrwv = λv

28

Theorem 7.3. ([9]) λ is an eigenvalue of Lrw with eigenvector v if and only if λ and v solve the
generalized eigenvalue problem Lv = λDv.

Proof. We show that Lrwv = λv.
Then D−1Lv = λv.
Therefore, Lv = λDv.

Theorem 7.4. ([9]) 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0 is
an eigenvalue of Lsym with eigenvector D

1
21.

Proof. The first statement true is because

Lrw1 = I1−D−1W1 =


1
1
...
1

−



1
d1

n∑
j=1

w1j

1
d2

n∑
j=1

w2j

...
1
dn

n∑
j=1

wnj


=


1
1
...
1

−


1
1
...
1

 = 0

Therefore, Lsym has an eigenvalue λ = 0 with the corresponding eigenvector v = 1.
The second statement is true because of Theorem 7.2.
Therefore, Lrw has an eigenvalue λ = 0 with the corresponding eigenvector v = D

1
21.

Theorem 7.5. ([9]) Lsym and Lrw are positive semidefinite and have n nonnegative real-valued
eigenvalues 0 = λ1 ≤ · · · ≤ λn.

Proof. By Theorem 7.1, we have

xTLsymx =
1

2

n∑
i=1

n∑
j=1

wij(
xi√
di
− xj√

dj
)2

for every x ∈ Rn.
Then xTLsymx ≥ 0 for every x ∈ Rn.
Hence, Lsym is positive semidefinite.
Therefore, Lsym ∈ Rn×n has n nonnegative real-valued eigenvalues 0 = λ1 ≤ · · · ≤ λn.
By Theorem 7.2, since Lrw has the same eigenvalues as Lsym, Lrw also has eigenvalues 0 = λ1 ≤
· · · ≤ λn.
Therefore, Lrw is positive semidefinite.

Proposition 7.1. ([9]) The multiplicity k of the eigenvalue 0 of both Lrw and Lsym equals the
number of connected components A1, . . . , Ak in the graph.

Proof. The proof is similar to that of Theorem 2.1.

7.2 Algorithms

Algorithm. We have shown some basic properties of the normalized Laplacian matrix Lrw and
Lsym. Now we can introduce the normalized spectral clustering. The algorithm is called normalized
spectral clustering because we use the eigenvectors of the normalized Laplacian matrices.

29

Algorithm 5 Normalized Spectral Clustering using Lrw
Input: similarity matrix S ∈ Rn×n, number k of clusters we want
Output: k clusters of the data points
1: Compute the unnormalized Laplacian matrix L.
2: Compute the first k eigenvectors u1, . . . ,uk of the eigenproblem Lu = λDu.
3: Let U ∈ Rn×k be the matrix containing the vectors u1, . . . ,uk as columns.
4: Let yi ∈ Rk be the vectors corresponding to the ith row of U , i = 1, . . . , n .
5: Cluster the points yii, i = 1, . . . , n in Rk with the k-means clustering into clusters C1, . . . , Ck.

Algorithm 6 Normalized Spectral Clustering using Lsym
Input: similarity matrix S ∈ Rn×n, number k of clusters we want
Output: k clusters of the data points
1: Compute the unnormalized Laplacian matrix L
2: Compute the normalized Laplacian matrix Lsym
3: Compute the first k eigenvectors u1, . . . ,uk of Lsym
4: Let U ∈ Rn×k be the matrix containing the vectors u1, . . . ,uk as columns.
5: Let T ∈ Rn×k be the row-normalized matrix such that tij =

uij

(
∑
k

u2ik)
1
2

6: Let yi ∈ Rk be the vectors corresponding to the ith row of T , i = 1, . . . , n .
7: Cluster the points yii, i = 1, . . . , n in Rk with the k-means clustering into clusters C1, . . . , Ck.

Practical Method for solving U in Algorithm 5 We have to be very careful about how
to program so that we take the first k eigenvectors of Lrw. If we directly compute Lrw with
Lrw = D−1L, then Lrw may not be symmetric, so the eigenvalue of Lrw may not all be real values.
Fortunately, in Theorem 7.3, we find out that the first k eigenvalues and eigenvectors of Lrw are
indeed the solutions to the eigenproblem Lu = λDu. Therefore, we can solve the eigenproblem
instead.

Example 7.2. We use the two-moons data again. This time we want to confirm that the normalized
spectral clustering using Lrw to correctly identify the two clusters.

The MATLAB code

[X,label] = twomoons(500);

epsilon = 0.3;
k = 2;

S = similarity(X,epsilon);
idx1 = my_normalized_sc_rw(S,k)

figure
gscatter(X(:,1),X(:,2),idx1,"rb");
legend("cluster 1","cluster 2")
title("spectral clustering using L_{rw}")

printed the following

30

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

spectral clustering using L
rw

cluster 1

cluster 2

Figure 8: Normalized spectral clustering using Lrw

Example 7.3. We use the normalized spectral clustering with Lsym to identity the two clusters in
the data from two-moons shapes.
The MATLAB code

[X,label] = twomoons(500);

epsilon = 0.3; k = 2;

S = similarity(X,epsilon);
idx1 = my_normalized_sc_sym(S,k)

figure
gscatter(X(:,1),X(:,2),idx1,"rb");
legend("cluster 1","cluster 2")
title("spectral clustering using L_{sym}")

printed the following

31

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

spectral clustering using L
sym

cluster 1

cluster 2

Figure 9: Normalized spectral clustering using Lsym

8 Normalized Cut and Normalized Spectral Clustering

In this section, we introduce the concept of the normalized cut and see how it is related to
normalized spectral clustering.

Definition 8.1. Given a clustering V = C1 ∪ · · · ∪ Ck, the normalized cut function is:

NCut(C1, . . . , Ck) =
k∑
l=1

cut(Cl, C̄l)

vol(Cl)

where
vol(Cl) =

∑
vi∈Cl

di

Definition 8.2. ([9]) Given a partition of V into k clusters C1, . . . , Ck, we define k normalized
cluster indicating vectors hl ∈ Rn, l = 1, . . . , k such that

hil =


1√

vol(Cl)
, if vi ∈ Cl

0, otherwise
(8.1)

Then we set H ∈ Rn×k as the matrix where H = [h1, . . . ,hk].

Proposition 8.1. ([9]) Let H be of form (8.1) and D be the degree matrix of the graph G =
(V,E,W). Then

HTDH = I ∈ Rk×k

Proof. Let (HTDH)uv denote the (u, v)-entry of (HTDH).

(HTDH)uv =

n∑
i=1

hiu · di · hiv

32

• Suppose u = v.
Then hiu · di · hiv = (hiu)2 · di = (1√

vol(Cl)
)2 · di = di

vol(Cl)
if vi ∈ Cu and 0 otherwise.

Note that vol(Cu) =
∑

vi∈Cu

di.

Then (HTDH)uv =
n∑
i=1

hiudihiv =
∑

vi∈Cu

1
vol(Cu)di +

∑
i 6∈Cu

0 = 1.

• Suppose u 6= v.
Then hiu ·di ·hiv = (0)di(

1√
vol(Cl)

) = 0 if vi ∈ Cv, and hiuhiv = (1√
vol(Cl)

)di(0) = 0 if vi ∈ Cu.

Then (HTDH)uv =
∑

vi∈Cu

0 +
∑

vi∈Cv

0 = 0.

Therefore, HTDH = I ∈ Rk×k.

Proposition 8.2. ([9])

(HTLH)ii = hTi Lhi =
cut(Ci, C̄i)

vol(Ci)

Proof. By Theorem 4.1 and Equation (8.1),

hTi Lhi =
1

2

n∑
x=1

n∑
y=1

wxy(hxi − hyi)2

=
1

2

∑
x∈Ci,y∈C̄i

wxy(hxi − hyi)2 +
1

2

∑
x∈C̄i,y∈Ci

wxy(hxi − hyi)2

=
1

2

∑
x∈Ci,y∈C̄i

wxy(
1√

vol(Ci)
− 0)2 +

1

2

∑
x∈C̄i,y∈Ci

wxy(0−
1√

vol(Ci)
)2

=
1

2

∑
x∈Ci,y∈C̄i

wxy
1

vol(Ci)
+

1

2

∑
x∈C̄i,y∈Ci

wxy
1

vol(Ci)

=
∑

x∈Ci,y∈C̄i

wxy
1

vol(Ci)

=
cut(Ci, C̄i)

vol(Ci)

Hence, we have

NCut(C1, . . . , Ck) =
k∑
i=1

cut(Ci, C̄i)

vol(Ci)
=

k∑
i=1

hTi Lhi =
k∑
i=1

(HTLH)ii = Tr(HTLH)

Thus, the problem of minimizing NCut(C1, . . . , Ck) is the same as:

min
H is of form (8.1)

Tr(HTLH) subject to HTDH = I ∈ Rk×k (8.2)

Relaxing the discreteness condition, we allow H to take arbitrary real values. Then the relaxed
problem becomes:

min
H∈Rn×k

Tr(HTLH) subject to HTDH = I ∈ Rk×k (8.3)

33

Substituting H = D−1/2T for T ∈ Rn ×k, we obtain the relaxed problem

min
T∈Rn×k

Tr(T TD−1/2LD−1/2T) subject to T TT = I ∈ Rk×k (8.4)

By section 5.3 of [9], this is the standard trace minimization problem which is solved by the matrix
T which contains the first k eigenvectors of Lsym = D−

1
2LD−

1
2 as columns. Re-substituting H =

D−1/2T and using Theorem 7.2, we see that the solution H consists of the first k eigenvectors of
Lrw, or the first k generalized eigenvectors of Lu = λDu. This yields the normalized spectral
clustering algorithm according to Algorithms 5.

9 Advantages of Normalized Spectral Clustering over Unnormal-
ized Spectral Clustering

We have learned the concepts of unnormalized spectral clustering and normalized spectral clus-
tering. One might wonder: which graph Laplacian matrix should we use to do the spectral clustering
and why?

In this section, we compare the spectral clustering algorithms and realize the superiority of the
normalized spectral clustering over the unnormalized spectral clustering.

Advantages of normalized spectral clustering over unnormalized spectral clustering
([9]) If the vertices of a given graph G = (V,E) have approximately the same degree, then all
the Laplacian matrices L,Lrw, Lsym will be similar to each other and work equally well for spectral
clustering. However, if the graph are very broadly distributed, then there are two reasons to advocate
for using normalized spectral clustering rather than unnormalzied spectral clustering.

1. By the graph partition point of view, the objectives of spectral clustering are to put dissimilar
points into different clusters and similar points into the same cluster. The normalized spectral
clustering can successfully implement both of the objectives while unnormalized can only
implement the first objective.

2. By the statistical analysis of both algorithms, if we draw more and more data points, then nor-
malized spectral clustering will converge to a useful partition in most real world applications.
In contrast, unnormalized spectral clustering can fail to converge, or that it can converge to
trivial solutions which construct clusters consisting of one single point. We have to make
sure that the eigenvalues of L corresponding to the eigenvectors used in unnormalized spectral
clustering are significantly smaller than the minimal degree in the graph.

Therefore, from the graph partition point of view and the statistical point of view, we should always
use normalized spectral clustering rather than unnormalized spectral clustering.

Advantages of using Lrw over Lsym ([9]) The eigenvectors of Lrw are cluser indicator vectors
while the eigenvectors of Lsym are additionally multiplied with D

1
2 , which might lead to undesired

results. Using Lsym does not have any computational advantages as well. Therefore, we should
always use Lrw, i.e., it is preferable to use Algorithm 5 for spectral clustering.

Example 9.1. This is an example to verify the superiority of normalized spectral clustering. It has
3000 randomly generated data points. We see that normalized spectral clustering provides 3 useful
clusters. On the contrary, unnormalized spectral clustering gives a trivial solution.
The MATLAB code

34

rng("default");
X = [randn(1000,2)*0.75+ones(1000,2);randn(1000,2)*0.5-ones(1000,2);randn(1000,2)*0.75];
epsilon = 1;k = 3;
S = similarity(X,epsilon);
D = diag(sum(S,2));
L = D - S;
[v1, e1] = eig(L,D);
U1 = v1(:,1:k);idx1 = kmeans(U1,k);

[v2, e2] = eig(L);
U2 = v2(:,1:k);
idx2 = kmeans(U2,k);

ax1 = subplot(2,1,1);
gscatter(X(:,1),X(:,2),idx1,"rgb");
legend("cluster 1","cluster 2","cluster 3")
title(ax1,"Normalized spectral clustering using")

ax2 = subplot(2,1,2);
gscatter(X(:,1),X(:,2),idx2,"rgb");
legend("cluster 1","cluster 2","cluster 3")
title(ax2,"Unnormalized spectral clustering")

printed the following

35

-3 -2 -1 0 1 2 3 4

-4

-2

0

2

4
Normalized spectral clustering

cluster 1

cluster 2

cluster 3

-3 -2 -1 0 1 2 3 4

-4

-2

0

2

4
Unnormalized spectral clustering

cluster 1

cluster 2

cluster 3

Figure 10: Comparison between normalized and unnormalized spectral clustering

36

Part III

Fairness and Fair Spectral Clustering
In this part, we introduce two fairness notions: the group fairness criteria and the individual

fairness criteria. By satisfying the group fairness criteria, we will have a clustering where each data
group has equal representation in every cluster. In this way, we can partition the data in a way
that "does not discriminate based on some protected attribute."([1])

The individual fairness criteria further extends the group fairness criteria. It tends to find clusters
that represent the interests of every individual. That is, the clustering asks that the adjacent vertices
of every vertex in the graph are proportionally represented in each cluster.

We can incorporate both group fairness criteria and individual fairness criteria into spectral
clustering and build the corresponding models and then do examples to see how these constraints
alter the behaviors of spectral clustering.

10 Group Fairness

In this section, we give the definition of group fairness along with examples. Then we study how
to achieve the group fairness criteria in terms of H where H is of form (8.1) so that we translate it
from the set notation into the linear algebra notation.

10.1 Definition

Definition 10.1. ([7]) Given V = V1 ∪ · · · ∪ Vh where the groups V1, . . . , Vh are disjoint, we define
the group fairness criteria as follows:

• a cluster Cl is statistically fair if all the groups have proportional representation in it. That
is,

|Vs ∩ Cl|
|Cl|

=
|Vs|
|V |

for every s ∈ {1, . . . , h} (10.1)

• a clustering C = C1 ∪ · · · ∪ Ck is statistically fair if:

for every l ∈ {1, . . . , k}, |Vs ∩ Cl|
|Cl|

=
|Vs|
|V |

, for every s ∈ {1, . . . , h} (10.2)

Example 10.1. Consider the topics of college admission. Suppose that there are 720 applicants.
Among them, there are 360 Whites, 240 Asians, 60 Blacks, and 60 Hispanics. Let V1 = {Whites}, V2 =
{Asians}, V3 = {Blacks}, and V4 = {Hispanics}.

Now suppose that the admission committee have made their decisions so that the applicants
are clustered into two according to the admission decisions. Let C1 = {successful applicants} and
C2 = {unsuccessful applicants}.Suppose that one-third of applicant from each ethnic groups are
admitted. That is, 120 Whites, 80 Asians, 20 Blacks, and 20 Hispanics are admitted.

We want to check that the admission satisfies that group fairness criteria so that no race is
discriminated in the admission process.

We have |V | = 720, |V1| = 360, |V2| = 240, |V3| = 60, |V4| = 60. Then

|V1|
|V |

=
1

2
,
|V2|
|V |

=
1

3
,
|V3|
|V |

=
1

12
,
|V1|
|V |

=
1

12

37

For C1,

|V1 ∩ C1|
|C1|

=
120

240
=
|V1|
|V |

,
|V2 ∩ C1|
|C1|

=
80

240
=
|V2|
|V |

,

|V3 ∩ C1|
|C1|

=
20

240
=
|V3|
|V |

,
|V4 ∩ C1|
|C1|

=
20

240
=
|V4|
|V |

For C2,

|V1 ∩ C2|
|C2|

=
240

480
=
|V1|
|V |

,
|V2 ∩ C2|
|C2|

=
160

480
=
|V2|
|V |

,

|V3 ∩ C2|
|C2|

=
40

480
=
|V3|
|V |

,
|V4 ∩ C2|
|C2|

=
40

480
=
|V4|
|V |

Hence, for every l ∈ {1, 2}, |Vs∩Cl|
|Cl| = |Vs|

|V | where s ∈ {1, 2, 3, 4}.
Thus, the group fairness criteria is satisfied, and we have a statistically fair admission.

Example 10.2. Suppose we are given the following data points. V1 are the 4 rectangle data points,
and V2 are the 4 circle data points. To have 2 statistically fair clusters, we want to find clusters C1

and C2 such that each cluster contains 2 data points from V1 and 2 data points from V2.

1

2

3

4

5

6

7

8

10
7

6

5

10

5

2
5

2

Figure 11: Graph G

Then one way to do the find a clustering that satisfies the group fairness criteria is the following.
We can check that the group fairness criteria is satisfied.

We have: V1 = {v1, v3, v5, v7}, V2 = {v2, , v4, v6, v8}, C1 = {v1, v2, v6, v7}, and C2 = {v3, v4, v5, v8}.
Then

|V1|
|V |

=
4

8
,
|V2|
|V |

=
4

8

For C1,
|V1 ∩ C1|
|C1|

=
2

4
=
|V1|
|V |

,
|V1 ∩ C1|
|C1|

=
2

4
=
|V2|
|V |

For C2,
|V1 ∩ C2|
|C2|

=
2

4
=
|V1|
|V |

,
|V1 ∩ C2|
|C2|

=
2

4
=
|V2|
|V |

Hence, we have a statistically fair clustering.

38

Example 10.3. We continue to study Example 10.2. This time to give a counterexample. Now if we
change the clusters to C1 = {v1, v3, v5, v7} and C2 = {v2, v4, v6, v8}, we will see that the clustering
is not statistically fair.

|V1|
|V |

=
6

8
,
|V2|
|V |

=
2

8

For C1,
|V1 ∩ C1|
|C1|

=
4

4
6= |V1|
|V |

,
|V1 ∩ C1|
|C1|

=
0

4
6= |V2|
|V |

For C2,
|V1 ∩ C2|
|C2|

=
0

4
6= |V1|
|V |

,
|V1 ∩ C2|
|C2|

=
4

4
6= |V2|
|V |

Therefore, the clustering is not statistically fair.

10.2 Matrix Representation

Definition 10.2. Given V = V1 ∪ · · · ∪ Vh where V1, . . . , Vh are disjoint, we define the group-
membership vectors f (s) ∈ {0, 1}n, s ∈ {1, . . . , h}, n = |V | such that

f
(s)
i =

{
1, if vi ∈ Vs
0, otherwise

(10.3)

Proposition 10.1. Let F̂ ∈ Rn×h be the following matrix:

F̂ =
[
f (1) − |V1||V | · 1n . . . f (h) − |Vh||V | · 1n

]
Then rank(F̂) = h− 1.

Proof. • First, we want to show that F̂1h = 0n.

F̂1h =
h∑
s=1

(f (s) − |Vs|
|V |
· 1n)

=
h∑
s=1

f (s) −
h∑
s=1

|Vs|
|V |
· 1n

= 1n − 1n

= 0n

Therefore, F̂1h = 0n and nullity(F̂) ≥ 1.

• Next, we want to show that the matrix

F =
[
f (1) − |V1||V | · 1n . . . f (h−1) − |Vh−1|

|V | · 1n
]

has full column rank. That is, Fx = 0n ⇐⇒ x = 0h−1.
Suppose that for some vector x =

[
x1 . . . xh−1

]T ∈ R(h−1), we have Fx = 0n.

39

Without loss of generality, let f (s) =



0
...
0
1
...
1
0
...
0


where

1
...
1

 corresponds to Vs.

Then
x1(f (1) − |V1|

|V |
· 1n) + · · ·+ xh−1(f (h−1) − |Vh−1|

|V |
· 1n) = 0n

This is equivalent to

x1f
(1) + · · ·+ xh−1f

(h−1) = x1
|V1|
|V |
· 1n + · · ·+ xh−1

|Vh−1|
|V |

· 1n

Looking at the ith row of both sides, we have:
for i = 1, . . . , |V1|:

x1 = x1
|V1|
|V |

+ · · ·+ xh−1
|Vh−1|
|V |

for i = (|V1|+ 1), . . . , (|V1|+ |V2|):

x2 = x1
|V1|
|V |

+ · · ·+ xh−1
|Vh−1|
|V |

...

for i = (|V1|+ · · ·+ |Vh−2|+ 1), . . . , (|V1|+ · · ·+ |Vh−1|):

xh−1 = x1
|V1|
|V |

+ · · ·+ xh−1
|Vh−1|
|V |

for i = (|V1|+ · · ·+ |Vh−1|+ 1), . . . , n:

0 = x1
|V1|
|V |

+ · · ·+ xh−1
|Vh−1|
|V |

From the last block, x1
|V1|
|V | + · · ·+ xh−1

|Vh−1|
|V | = 0.

We can plug this result into the other blocks and recursively get xi = 0 where i = 1, . . . , h−1.
Thus, Fx = 0n =⇒ x = 0h−1.
Conversely, if x = 0h−1, then Fx = 0n.
Therefore, Fx = 0n ⇐⇒ x = 0h−1.
Therefore, F has full column rank.
Therefore, F̂ has rank h− 1.

40

Lemma 10.1. ([7]) Let F ∈ Rn×(h−1) consists of h− 1 group-membership vectors such that

F =
[
f (1) − |V1||V | · 1n . . . f (h−1) − |Vh−1|

|V | · 1n
]

(10.4)

Let V = C1∪· · ·∪Ck be a clustering encoded by the matrix H ∈ Rn×k where H consists of normalized
cluster indicating vectors as in Equation (8.1). Then

F TH = 0 ∈ R(h−1)×k (10.5)

is equivalent to the group fairness criteria (Equation (10.2)).

Proof. Let l ∈ {1, . . . , k} be fixed. For every s ∈ {1, . . . , h}, by Equations 10.3 and Equations 8.1,

f
(s)
i hil =


(1)(

1√
vol(Cl)

) =
1√

vol(Cl)
, if vi ∈ Vs ∩ Cl

0, otherwise

Hence,
n∑
i=1

f
(s)
i hil =

∑
vi∈Vs∩Cl

1√
vol(Cl)

+
∑

i 6∈Vs∩Cl

0 =
|Vs ∩ Cl|√
vol(Cl)

By Equations 8.1,
n∑
i=1

hil =
∑
vi∈Cl

1√
vol(Cl)

+
∑
vi 6∈Cl

0 =
∑
i∈Cl

1√
vol(Cl)

Hence,
n∑
i=1

|Vs|
|V |

hil =
|Vs|
|V |

n∑
i=1

hil =
|Vs|
|V |

∑
vi∈Cl

1√
vol(Cl)

=
|Vs|
|V |
· |Cl|√

vol(Cl)

Combining the above, we get

n∑
i=1

(f
(s)
i −

|Vs|
|V |

)hil =
|Vs ∩ Cl|√
vol(Cl)

− |Vs|
|V |
· |Cl|√

vol(Cl)

Therefore, for every s ∈ {1, . . . , h}

n∑
i=1

(f
(s)
i −

|Vs|
|V |

)hil = 0⇐⇒ |Vs ∩ Cl|
Cl

=
|Vs|
|V |

We already show that F̂ has rank h− 1.
Thus, to satisfy the fairness criteria, we only need to take the first h − 1 columns of F̂ , which is
equivalent to F , so that F TH = 0 ∈ R(h−1)×k

41

Therefore,

F TH =


f (1) − |V1||V | · 1n
f (2) − |V2||V | · 1n

...
f (h−1) − |Vh−1|

|V | · 1n


[
h1 h2 . . . hk

]

=


n∑
i=1

(f
(1)
i −

|V1|
|V |)hi1 . . .

n∑
i=1

(f
(1)
i −

|V1|
|V |)hik

...
. . .

...
n∑
i=1

(f
(h−1)
i − |Vh−1|

|V |)hi1 . . .
n∑
i=1

(f
(h−1)
i − |Vh−1|

|V |)hik


= 0 ∈ R(h−1)×k

is equivalent to the group fairness criteria.

Example 10.4. In Example 10.2, we show that C1 = {v1, v2, v6, v7} and C2 = {v3, v4, v5, v8} are
statistically fair by the group fairness criteria. We want to show that the backward direction of
Lemma 10.1 holds. The degree of each vertex vi is:

d1 = 23, d2 = 25, d3 = 13, d4 = 12

d5 = 7, d6 = 2, d7 = 10, d8 = 12

Then the volumes of cluster C1 and C2 are:

vol(Cl) = d1 + d2 + d6 + d7 = 60

vol(C2) = d3 + d4 + d5 + d8 = 44

Now we can construct the vectors f (s), s = 1, 2 and hl, l = 1, 2

f (1) =



1
0
1
0
1
0
1
0


, f (2) =



0
1
0
1
0
1
0
1


,h1 =



1/
√

60

1/
√

60
0
0
0

1/
√

60

1/
√

60
0


,h2 =



0
0

1/
√

29

1/
√

29

1/
√

29
0
0

1/
√

29


Then

F =



1/2
−1/2
1/2
−1/2
1/2
−1/2
1/2
−1/2


, H =



1/
√

60 0

1/
√

60 0

0 1/
√

29

0 1/
√

29

0 1/
√

29

1/
√

60 0

1/
√

60 0

0 1/
√

29


42

We have
F TH =

[
0 0

]
Therefore, the result is verified.

Example 10.5. We continue to study Lemma 10.1 from Example 10.3. We see that C1 = {v1, v3, v5, v7}
and C2 = {v2, v4, v6, v8} do not form a fair clustering by the group fairness criteria.
In this case, the volumes of C1 and C2 are:

vol(C1) = d1 + d3 + d5 + d7 = 53

vol(C2) = d2 + d4 + d6 + d8 = 51

Then we can form H:

H =



1/
√

53 0

0 1/
√

29

1/
√

53 0

0 1/
√

29

1/
√

53 0

0 1/
√

29

1/
√

53 0

0 1/
√

29


Then

F TH =
[
0.2747 −0.3714

]
6=
[
0 0

]
Therefore, the result is verified.

10.3 Consistency Analysis

F TH = 0 ∈ R(h−1)×k implies that the columns of H are in null(F T). We would like to find out
the relationship between n, k, and h so that null(F T) is sufficiently large to provide a non-trivial
H, i.e., all the columns of H are non-zero.

Proposition 10.2. We have a non-trivial H ∈ Rn×k if and only if n− h+ 1 ≥ k.

Proof. (=⇒) Suppose that we have a non-trivial H ∈ Rn×k.
Then nullity(F T) ≥ k.
Recall that by the rank-nullity theorem, for any A ∈ Rm×n, rank(A) + nullity(A) = rank(AT) +
nullity(A) = n.
By Proposition 10.1, F has full rank and rank(F) = h− 1. Then rank(F T) = rank(F) = h− 1.
Then nullity(F T) = n− h+ 1.
Thus, n− h+ 1 ≥ k.

(⇐=) Suppose that n− h+ 1 ≥ k.
Then nullity(F T) ≥ k.
Thus, we have a non-trivial H.

Example 10.6. In Example 10.4, we find H such that F TH = 0 ∈ R(h−1)×k. We want to verify
that n− h+ 1 ≥ k.
Here n = 8, h = 2, k = 2.
Then n− h+ 1 = 7 ≥ k = 2.
Therefore, the result is verified.

43

11 Normalized Spectral Clustering with Group Fairness Constraints

In this section, we incorporate the group fairness criteria into the normalized spectral clustering,
do the consistency analysis, and provide a numerical experiment.

Recognition: This section is based on the Appendix of [7].

11.1 Model

Let F ∈ Rn×(h−1) consists of h−1 group-membership vectors defined by Equation (10.4) andH ∈
Rn×k consists of k normalized cluster indicating vectors defined by Equation (8.1). By Lemma 10.1,
F TH = 0 ∈ R(h−1)×k implies the fairness criteria.

Therefore, to get the normalized spectral clustering that achieves group fairness criteria, we have
to solve

min
H is of form (8.1)

Tr(HTLH) subject to HTDH = I and F TH = 0 (11.1)

By relaxation, we have

min
H∈Rn×k

Tr(HTLH) subject to HTDH = I and F TH = 0 (11.2)

11.2 Numerical Experiment

Example 11.1. We continue Example 10.4 by doing its numerical version. The coordinates of the
data points and the data groups are the same as those in the example. We see that the normalized
spectral clustering with group fairness constraints successfully finds 2 statistically fair clusters: C1 =
{v1, v2, v6, v7} and C2 = {v3, v4, v5, v8}. On the other hand, if we use the normalized spectral
clustering without group fairness constraints, then each cluster finds exactly V1 and V2, which results
in unfair clustering by the group fairness criteria.

The MATLAB code

clear;

X = [0.6 0.4; 0 -2; 2.4 0; 3.0 -1.5;
1.6 1; 1.5 -1.3; -0.2 0.6; 1.9 -2.2];

v = [1 2 1 2 1 2 1 2];

epsilon = 2.8; k = 2;
adj = similarity(X,epsilon);

f1 = [1 0 1 0 1 0 1 0]’;
F = [f1];
n = size(F,1); l = size(F,2);
for i = 1:l

F(:,i) = F(:,i) - sum(F(:,i))/n * ones(n,1);
end

clusterLabels1 = Fair_SC_normalized(adj,k,F);
clusterLabels2 = spectralcluster(X,2);

44

figure
gscatter(X(:,1),X(:,2),v,"k","x*",[20 20])
X1 = X(:,1); X2 = X(:,2);
hold on
scatter(X1(clusterLabels1 == 1), X2(clusterLabels1 == 1),400,"r","s",’LineWidth’,4);
scatter(X1(clusterLabels1 == 2), X2(clusterLabels1 == 2),400,"b","o",’LineWidth’,4);
lgd = legend("group 1","group 2","cluster 1","cluster 2");
lgd.FontSize = 12;
title1 = title("Normalized spectral clustering with group fairness constraints");
title1.FontSize = 18;
hold off

gscatter(X(:,1),X(:,2),v,"k","x*",[20 20])
hold on
X1 = X(:,1); X2 = X(:,2);
scatter(X1(clusterLabels2 == 1), X2(clusterLabels2 == 1),400,"r","s",’LineWidth’,4);
scatter(X1(clusterLabels2 == 2), X2(clusterLabels2 == 2),400,"b","o",’LineWidth’,4);
lgd = legend("group 1","group 2","cluster 1","cluster 2");
lgd.FontSize = 12;
title2 = title("Normalized spectral clustering without group fairness constraints");
title2.FontSize = 17;
hold off

print -depsc newfigure1

prints the following

45

-0.5 0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Normalized spectral clustering with group fairness constraints

group 1

group 2

cluster 1

cluster 2

-0.5 0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Normalized spectral clustering without group fairness constraints

group 1

group 2

cluster 1

cluster 2

Figure 12: Normalized spectral clustering with/without group fairness constraints

12 Individual Fairness

By [5], fairness should be dealt with not only at the group level but also at the individual
level. It states that group fairness criteria fails to consider individuals’ interests. Consequently, it
proposes another fairness criteria using the concept of the representation graph instead of using the
group-membership vectors. Thus, we need to study the individual fairness criteria, in both the set
notation and the matrix notation.

46

12.1 Definition

Definition 12.1. ([5]) A representation graph R = (V,ER) is a graph that contains a node
for each individual in the data set and two nodes are connected if they are similar with respect to
sensitive attributes or represent each other’s interests.

Remark 12.1. ([5]) "The representation graph represents how similar the individuals are with
respect to some sensitive attributes."

We use R ∈ {0, 1} ∈ Rn×n to denote the adjacency matrix of R where n = |V |.

Relationship between R = (V,ER) and G = (V,EG) ([5] & [6]) G denotes a similarity graph
based on which clusters to be discovered, and R is defined on the same set of vertices as G and has
edges specifying the relationship between the vertices. For example, G may be an ε-neighborhood
similarity graph defined by Definition 5.1, and R may be a relationship graph based on the the
interactions between individuals.

We assume that G and R are undirected, and G additionally does not have self-loops. Thus,
both A and R are symmetric, and aii = 0 for every i = 1, . . . , n.

Definition 12.2. ([5]) Given a representation graph R = (V,ER) and G = (V,EG), we define the
individual fairness criteria as follows:

• a vertex vi finds clusters C1, . . . , Ck individually fair if all its adjacent vertices in R are
represented proportionally in each cluster. That is,

|{vj | rij = 1 ∧ vj ∈ Cl}|
|Cl|

=
|{vj | rij = 1}|

|V |
, for every l ∈ {1, . . . , k} (12.1)

• a clustering C = C1 ∪ . . . Ck is individually fair with respect to a representation graph R if:

for every i ∈ {1, . . . , n}, |{vj | rij = 1 ∧ vj ∈ Cl}|
|Cl|

=
|{vj | rij = 1}|

|V |
, for every l ∈ {1, . . . , k}

(12.2)

Example 12.1. Suppose that there are 6 students called Alex, Ben, Carl, Daniel, Ethan, and Felix.
They want to build two 3-player soccer teams to play together. Alex and Felix are friends of nobody.
Ben is a friend of Carl and Daniel. Carl is a friend of Ben and Ethan. Daniel is a friend of Ben
and Ethan. Ethan is a friend of Carl and Daniel. Let C1 = {team 1} and C2 = {team 2}.

Then, to build the team fairly from the perspective of individuals, we want that for every student,
half of his friends are in team 1, and the other half are in team 2.

C1 = {Ben,Carl, Felix}, C2 = {Alex,Daniel, Ethan}

A possible graph G = (V,EG) can be the following:

A

B

C

D

E

F

Figure 13: Graph G

47

An unweighted representation graph R = (V,ER) with respect to the relationship of the students
is shown below:

A

B

C

D

E

F

Figure 14: Team 1 and Team 2 given the friend relationship graph

We can check that:
For Alex,

|{vj | r1j = 1 ∧ vj ∈ C1}|
|C1|

= 0 =
|{vj | r1j = 1}|

|V |
,
|{vj | r1j ∧ vj ∈ C2}|

|C2|
= 0 =

|{vj | r1j = 1}|
|V |

For Ben,

|{vj | r2j = 1 ∧ vj ∈ C1}|
|C1|

=
1

3
=
|{vj | r2j = 1}|

|V |
,
|{vj | r2j ∧ vj ∈ C2}|

|C2|
=

1

3
=
|{vj | r2j = 1}|

|V |

For Carl,

|{vj | r3j = 1 ∧ vj ∈ C1}|
|C1|

=
1

3
=
|{vj | r3j = 1}|

|V |
,
|{vj | r3j ∧ vj ∈ C2}|

|C2|
=

1

3
=
|{vj | r3j = 1}|

|V |

For David,

|{vj | r4j = 1 ∧ vj ∈ C1}|
|C1|

=
1

3
=
|{vj | r4j = 1}|

|V |
,
|{vj | r4j ∧ vj ∈ C2}|

|C2|
=

1

3
=
|{vj | r4j = 1}|

|V |

For Ethan,

|{vj | r5j = 1 ∧ vj ∈ C1}|
|C1|

=
1

3
=
|{vj | r5j = 1}|

|V |
,
|{vj | r5j ∧ vj ∈ C2}|

|C2|
=

1

3
=
|{vj | r5j = 1}|

|V |

For Felix,

|{vj | r6j = 1 ∧ vj ∈ C1}|
|C1|

= 0 =
|{vj | r6j = 1}|

|V |
,
|{vj | r6j ∧ vj ∈ C2}|

|C2|
= 0 =

|{vj | r6j = 1}|
|V |

Therefore, team 1 and team 2 are individually fair.

Example 12.2. We continue to study Example 12.1. This time we give a counterexample of indi-
vidual fairness. Suppose that we build the two teams with the following:

C1 = {Alex,Ben, Felix}, C2 = {Carl,Daniel, Ethan}

Then these two teams are not individually fair for everyone.
For example, both Ben’s friends are in team 2, and he has no friend in team 1, which is not fair to
him. That is,

|{vj | r2j = 1 ∧ vj ∈ C1}|
|C1|

= 0 6= |{vj | r1j = 1}|
|V |

=
2

6
,
|{vj | r1j ∧ vj ∈ C2}|

|C2|
=

2

3
6= |{vj | r1j = 1}|

|V |
=

2

6

Therefore, team 1 and team 2 are not individually fair.

48

12.2 Relationship between Individual Fairness and Group Fairness

Individual fairness vs. group fairness ([5]) A representation graph R = (V,ER) where rij = 1
if and only if vi and vj belong to the same data group reduces the fairness criteria from individual
fairness to group fairness.

Example 12.3. The purpose of this example is to identify the difference between group fairness and
individual fairness. Suppose that we are given the following representation graph R. We have the
following:

V1 = {v1, v3, v5, v7}, V2 = {v2, v4, v6, v8}

A possible graph G = (V,EG) can be the following:

1

2

3

4

5

6

7

8

Figure 15: Graph G = (V,EG)

The representation graph R = (V,ER) is the following:

1

2

3

4

5

6

7

8

Figure 16: Representation graph R

49

• Following the group fairness criteria, we can choose C1 = {v1, v2, v5, v6} and C2 = {v3, v4, v7, v8}.
We first check that the clustering satisfies Equation (10.2).

|V1|
|V |

=
4

8
,
|V2|
|V |

=
4

8

For C1,
|V1 ∩ C1|
|C1|

=
2

4
=
|V1|
|V |

,
|V2 ∩ C1|
|C1|

=
2

4
=
|V2|
|V |

For C2,
|V1 ∩ C2|
|C2|

=
2

4
=
|V1|
|V |

,
|V2 ∩ C2|
|C2|

=
2

4
=
|V2|
|V |

Therefore, it is a statistically fair clustering.
However, according to individual fairness, such a clustering C = C1 ∪ C2 is not fair from the
perspective of vertices.
For example, both of adjacent vertices of v1 are in C1, and neither of them is in C2. That is,

|{vj | r1j ∧ vj ∈ C1}|
|C1|

=
2

4
6= |{vj | r1j = 1}|

|V |
=

2

8

Therefore, v1 does not have enough representation in C2.
Therefore, it is not a fair clustering by individual fairness.

• We now change our clustering so that C1 = {v1, v4, v5, v8} and C2 = {v2, v3, v6, v7}.
We first check

|V1|
|V |

=
4

8
,
|V2|
|V |

=
4

8

For C1,
|V1 ∩ C1|
|C1|

=
2

4
=
|V1|
|V |

,
|V1 ∩ C1|
|C1|

=
2

4
=
|V2|
|V |

For C2,
|V1 ∩ C2|
|C2|

=
2

4
=
|V1|
|V |

,
|V1 ∩ C2|
|C2|

=
2

4
=
|V2|
|V |

Hence, it is a fair clustering by the group fairness criteria.
It further satisfies the individual fairness criteria.
For v1,

|{vj | r1j = 1 ∧ vj ∈ Cl}|
|Cl|

=
1

4
=
|{vj | r1j = 1}|

|V |
, l ∈ {1, 2}

For v2,
|{vj | r2j = 1 ∧ vj ∈ Cl}|

|Cl|
=

1

4
=
|{vj | r2j = 1}|

|V |
, l ∈ {1, 2}

It is easy to see that v3, . . . , v8 all finds clusters C1 and C2 individually fair.
Therefore, clusters C1, C2 are individually fair with respect to this representation graph R.
Therefore, such a clustering is fair by both the group fairness criteria and the individual
fairness criteria.

50

12.3 Matrix Representation

Lemma 12.1. ([5]) Let n = |V | and H ∈ Rn×k be of form (8.1). Let J = I− 1
|V |11

T where 1 ∈ Rn

is an all-ones vector. Let R ∈ Rn×n be the adjacency matrix of the given representation graph R.
Then

RJH = 0 ∈ Rn×k (12.3)

is equivalent to the individual fairness criteria (Equation (12.2)).

Proof. Fix any arbitrary node vi ∈ V and l ∈ {1, . . . , k}. Recall that H contains the normalized
cluster that indicates vectors such that

hil =


1√

|vol(Cl)|
, if i ∈ Cl

0, if i 6∈ Cl

Note that RH =
n∑
j=1

rijhjl and R(I − 11T /n)H = 1
n(

n∑
j=1

rij)(
n∑
j=1

hjl).

By Definition 12.2 and Equation (8.1), rijhjl = 1√
|vol(Cl)|

if vj ∈ {vj | rij = 1 ∧ vj ∈ Cl} and 0

otherwise.
By Equation (8.1),

n∑
j=1

hjl =
∑
vi∈Cl

1√
|vol(Cl)|

= |Cl|√
|vol(Cl)|

.

Combining the above, we have

n∑
j=1

rijhjl =
1

n
(
n∑
j=1

rij)(
n∑
j=1

hjl)

is equivalent to

1√
|vol(Cl)|

|{vj | rij = 1 ∧ vj ∈ Ck}| =
1

n
|{vj | rij = 1}| |Cl|√

|vol(Cl)|

Since this holds for any arbitrary vi ∈ V and l ∈ {1, . . . , k},

R(I− 1

|V |
11T)H = 0 ∈ Rn×k ⇐⇒ ∀vi ∈ V,

|{vj | rij = 1 ∧ vj ∈ Cl}|
|Cl|

=
|{vj | rij = 1}|

|V |
, l ∈ {1, . . . , k}

Example 12.4. In Example 12.1, we show that C1 = {Ben,Carl, Felix}, C2 = {Alex,Daniel, Ethan}
are individually fair. We verify that the clusters satisfy the backward direction of Lemma 12.1.
The adjacency matrix R of the representation graph R is

R =



0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 0 0 0


51

The degree of each vertex vi is:

d1 = 0, d2 = 2, d3 = 2, d4 = 2, d5 = 2, d6 = 0

Then the volumes of cluster C1 and C2 are:

vol(C1) = d2 + d3 + d6 = 4, vol(C2) = d1 + d4 + d5 = 4

Then the matrix H containing the normalized cluster indicating vectors is

H =



0 1/2
1/2 0
1/2 0
0 1/2
0 1/2

1/2 0


We have

RJH =



0 0
0 0
0 0
0 0
0 0
0 0


Therefore, the result is verified.

Example 12.5. We continue to verify Lemma 12.1 from Example 12.2. We show that C1 =
{Alex,Ben, Felix}, C2 = {Carl,Daniel, Ethan} does not provide an individually fair clustering.
That is, suppose

H =



1/
√

2 0

1/
√

2 0

0 1/
√

6

0 1/
√

6

0 1/
√

6

1/
√

2 0


Then

RJH =



0 0
−0.7071 0.4082

0 0
0 0

−0.7071 0.4082
0 0

 6= 0 ∈ R6×2

Therefore, the result is verified.

Example 12.6. We now verify that the clusters satisfy the backward direction of Lemma 12.1 using
Example 12.3.

52

The adjacency matrix R of the representation graph R is

R =



0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0


The degree of each vertex is:

d1 = 2, d2 = 2, d3 = 0, d4 = 2,

d5 = 2, d6 = 2, d7 = 2, d8 = 0

• We show that C1 = {v1, v2, v5, v6} and C2 = {v3, v4, v7, v8} does not give an individually fair
clustering.
The volumes of C1 and C2 are:

vol(C1) = d1 + d2 + d5 + d6 = 8, vol(C2) = d3 + d4 + d7 + d8 = 4

Then the matrix H containing the normalized cluster indicating vectors

H =



1/
√

8 0

1/
√

8 0
0 1/2
0 1/2

1/
√

8 0

1/
√

8 0
0 1/2
0 1/2


Then

RJH =



0.3536 −0.5
0.3536 −0.5

0 0
−0.3536 0.5
0.3536 −0.5
0.3536 −0.5
−0.3536 0.5

0 0


6= 0 ∈ R8×2

• In contrast, we show that C1 = {v1, v4, v5, v8} and C2 = {v2, v3, v6, v7} form an individually
fair clustering.
The volumes of C1 and C2 are:

vol(C1) = d1 + d4 + d5 + d8 = 6,

vol(C2) = d2 + d3 + d6 + d7 = 6

53

Then the matrix H is

H =



1/
√

6 0

0 1/
√

6

0 1/
√

6

1/
√

6 0

1/
√

6 0

0 1/
√

6

0 1/
√

6

1/
√

6 0


We have

RJH =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


Therefore, the result is verified.

12.4 Consistency Analysis

RJH = 0 ∈ Rn×k implies that the columns of H are in null(RJ). We want that null(RJ) to
be sufficient large so that we get a non-trivial H ∈ Rn×k, i.e., all the columns of H are non-zero.
Hence, we need to figure out the rank condition of R.

Proposition 12.1. rank(J) = n− 1

Proof.

J =


1− 1

n − 1
n . . . − 1

n − 1
n

− 1
n 1− 1

n . . . − 1
n − 1

n
...
− 1
n − 1

n . . . 1− 1
n − 1

n
− 1
n − 1

n . . . − 1
n 1− 1

n


Then

J1n = I1− 1

n
1(1T1) = 1− n

n
1 = 0n

Therefore, J1n = 0n.
Therefore, nullity(J) ≥ n− 1.
Let M represent the first n− 1 columns of J .
We want to show that M has full column rank. That is, Mx = 0n ⇐⇒ x = 0n−1.
Suppose that for some x =

[
x1 . . . xn−1

]T ∈ R(n−1), Mx = 0n.
Then looking at the ith row of both sides, we have:
for i = 1, . . . , n− 1:

xi −
1

n

n−1∑
s=1

xs = 0

54

for i = n:

− 1

n

n−1∑
s=1

xs = 0

From the last block, − 1
n

n−1∑
s=1

xs = 0. We can plug it into the other blocks and recursively get

x1 = · · · = xn−1 = 0.
Thus, x = 0n−1.
Conversely, if x = 0n−1, then Mx = 0n.
Therefore, Mx = 0n ⇐⇒ x = 0n−1.
Therefore, M has full rank.
Therefore, rank(J) = n− 1.

Recall that:

• By the rank-nullity theorem, if A ∈ Rm×n, then rank(A) + nullity(A) = rank(AT) +
nullity(A) = n.

• By the upper bound on the rank of matrix multiplication, if A ∈ Rm×n and B ∈ Rn×k, then
rank(AB) ≤ min{rank(A), rank(B)}.

• By the Sylvester’s rank inequality, if A ∈ Rm×n and B ∈ Rn×k, then rank(A)+rank(B)−n ≤
rank(AB).

Proposition 12.2. Suppose that we get a non-trivial H ∈ Rn×k. Then rank(R) ≤ n− k + 1.

Proof. Let H ∈ Rn×k be non-trivial.
Since the columns of H ∈ Rn×k are in null(RJ) where RJ ∈ Rn×n, we have nullity(RJ) ≥ k.
By the rank-nullity theorem, rank(RJ) + nullity(RJ) = rank((RJ)T) + nullity(RJ) = n, we have
rank(RJ) ≤ n− k.
By the upper bound on the rank of matrix multiplication, we have:

rank(RJ) ≤ min{rank(R), rank(J} = min{rank(R), n− 1}

By the Sylvester’s rank inequality, the lower bound on rank(RJ) is

rank(R) + rank(J)− n = rank(R)− 1 ≤ rank(RJ)

Combining the above, to have a non-trivial H ∈ Rn×k, we want:

rank(R)− 1 ≤ rank(RJ) ≤ min{rank(R), n− 1}

Therefore, rank(R) ≤ n− k + 1.

Example 12.7. In both Example 12.4 and Example 12.6, we can find H ∈ Rn×k subject to
RJH = 0 ∈ Rn×k. We want to check that in both cases, rank(R) ≤ n− k + 1.

In Example 12.4, since we have n = 6 data points and k = 2 individually fair clusters, we should
expect that rank(R) ≤ n− k + 1 = 5.
Indeed, rank(R) = 2.
Thus, it satisfies Proposition 12.2.

55

In Example 12.6, since we have n = 8 data points and k = 2 individually fair clusters, we should
expect that rank(R) ≤ n− k + 1 = 7.
Indeed, rank(R) = 3.
Thus, it also satisfies Proposition 12.2.

Proposition 12.3. rank(R) ≤ n− k + 1 does not guarantee that we have a non-trivial H.

Example 12.8. Suppose that we are given the adjacency matrix R of a representation graph R as
the following:

R =


1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 0


Since R = RT , R is a reasonable adjacency matrix of some representation graph.
We would like to find k = 2 individually clusters.
This is equivalent to finding a non-trivial H ∈ R4×2.
Since rank(R) = 3, rank(R) ≤ n− k + 1 = 4− 2 + 1 = 3.
However,

RJ =


0.5 0.5 −0.5 −0.5
0.5 −0.5 0.5 −0.5
−0.5 0.5 0.5 −0.5

0 0 0 0


Thus, rank(RJ) = 3, which implies that nullity(RJ) = 1 < k = 2.
Therefore, there does not exist a non-trivial H ∈ R4×2.

Remark 12.2. In practice, we want R to be sparse and to have low rank in order to get a non-trivial
H.

13 Normalized Spectral Clustering with Individual Fairness Con-
straints

In this section, we incorporate the individual fairness criteria into the normalized spectral clus-
tering and do the consistency analysis.

Recognition: This section is based on section 3 of [5].

13.1 Model

Let R ∈ Rn×n be the adjacency matrix of R = (G,ER) and H ∈ Rn×k consists of k normalized
cluster indicating vectors defined by Equation (8.1). By Lemma 12.1, RJH = 0 ∈ Rn×k where
J = I − 1

|V |11
T implies the individual fairness criteria.

Therefore, to get the normalized spectral clustering with individual fairness constraints, we have
to solve

min
H is of form (8.1)

Tr(HTLH) subject to HTDH = I and RJH = 0 (13.1)

By relaxation, we have

min
H∈Rn×k

Tr(HTLH) subject to HTDH = I and RJH = 0 (13.2)

56

13.2 Numerical Experiment

Example 13.1. We continue Example 12.4 by doing a numerical experiment. We use the same
representation graph R as in the example. We see that the normalized spectral clustering with
individual fairness constraints provides the same clustering as in the example.

The MATLAB code

clear;

X = [-1.5 1.5; -1.5 0; 0 1.5;
0 0; 1.5 1.5; 1.5 0];

epsilon = 2; k = 2;
adj = similarity(X,epsilon);

R = [0 0 0 0 0 0;
0 0 1 1 0 0;
0 1 0 0 1 0;
0 1 0 0 1 0;
0 0 1 1 0 0;
0 0 0 0 0 0];

J = eye(6) - 1/6 * ones(6,1) * ones(1,6);

clusterLabels1 = Fair_SC_normalized_individual(adj,k,R* J);

figure
hold on
X1 = X(:,1); X2 = X(:,2);
scatter(X1(clusterLabels1 == 1), X2(clusterLabels1 == 1),400,"r","s",’LineWidth’,4);
scatter(X1(clusterLabels1 == 2), X2(clusterLabels1 == 2),400,"b","o",’LineWidth’,4);
lgd = legend("cluster 1","cluster 2");
lgd.FontSize = 12;
title2 = title("Normalized spectral clustering with individual fairness constraints");
title2.FontSize = 15;
hold off
print -depsc newfigure

prints the following

57

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5
Normalized spectral clustering with individual fairness constraints

cluster 1

cluster 2

Figure 17: Normalized spectral clustering with individual fairness constraints

Example 13.2. We can do the numerical version of Example 12.6. We use the same representation
graph R as in the example. The normalized spectral clustering with individual fairness constraints
provides the same clustering as in the example.

The MATLAB code

clear;

X = [-2 2; -2 0; -2 -2; -2 -4 ;0 2; 0 0; 0 -2; 0 -4];

epsilon = 5; k = 2;
adj = similarity(X,epsilon)

R = [0 1 0 0 1 0 0 0;
1 0 0 0 0 1 0 0;
0 0 0 0 0 0 0 0;
0 0 0 1 0 0 1 0;
1 0 0 0 0 1 0 0;
0 1 0 0 1 0 0 0;
0 0 0 1 0 0 1 0;
0 0 0 0 0 0 0 0];

J = eye(8) - 1/8 * ones(8,1) * ones(1,8);
RJ = R * J;

clusterLabels1 = Fair_SC_normalized_individual(adj,k, RJ);

figure
hold on
X1 = X(:,1); X2 = X(:,2);

58

scatter(X1(clusterLabels1 == 1), X2(clusterLabels1 == 1),400,"r","s",’LineWidth’,4);
scatter(X1(clusterLabels1 == 2), X2(clusterLabels1 == 2),400,"b","o",’LineWidth’,4);
lgd = legend("cluster 1","cluster 2");
lgd.FontSize = 12;
title2 = title("Normalized spectral clustering with individual fairness constraints");
title2.FontSize = 15;
hold off

print -depsc newfigure

prints the following

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

-4

-3

-2

-1

0

1

2
Normalized spectral clustering with individual fairness constraints

cluster 1

cluster 2

Figure 18: Normalized spectral clustering with individual fairness constraints

59

References

[1] Anagnostopoulos, Aris, et al. Principal Fairness: Removing Bias via Projections. 2021. https:
//arxiv.org/abs/1905.13651.

[2] Boyd, Stephen, and Lieven Vandenberghe. Introduction to Applied Linear Algebra. 1 ed. Cam-
bridge University Press, 2018, pp. 69-87.

[3] Chierichetti, Flavio, et al. Fair Clustering Through Fairlets. Conference on Neural Information
Processing Systems, 2017. https://arxiv.org/abs/1802.05733.

[4] Gallier, Jean. Notes on Elementary Spectral Graph Theory. Applications to Graph Clustering
Using Normalized Cuts. 2013. https://arxiv.org/abs/1311.2492.

[5] Gupta, Shubham, and Ambedkar Dukkipati. Protecting Individual Interests across Clusters:
Spectral Clustering with Guarantees. 2021. https://arxiv.org/abs/2105.03714.

[6] Gupta, Shubham, and Ambedkar Dukkipati. On consistency of constrained spectral cluster-
ing under representation-aware stochastic block model. 2022. https://arxiv.org/abs/2203.
02005.

[7] Kleindessner, Matthäus, et al. Guarantees for Spectral Clustering with Fairness Constraints.
Proceedings of the 36th International Conference on Machine Learning, 2019. https://arxiv.
org/abs/1901.08668.

[8] Rosen, Kenneth. Discrete Mathematics and Its Applications. 8th ed., McGraw Hill, 2018, pp.
641-89.

[9] von Luxburg, Ulrike. A Tutorial on Spectral Clustering. Statistics and Computing, 2007.
https://arxiv.org/abs/0711.0189.

[10] Prof. Bai’s Lecture Notes on Spectral Clustering.

[11] Prof. Bai’s Lecture Notes for ECS 122A.

60

https://arxiv.org/abs/1905.13651
https://arxiv.org/abs/1905.13651
https://arxiv.org/abs/1802.05733
https://arxiv.org/abs/1311.2492
https://arxiv.org/abs/2105.03714
https://arxiv.org/abs/2203.02005
https://arxiv.org/abs/2203.02005
https://arxiv.org/abs/1901.08668
https://arxiv.org/abs/1901.08668
https://arxiv.org/abs/0711.0189

Part IV

Appendix

A Acknowledgement

I would like to express my gratitude to Prof. Zhaojun Bai for guiding me upon this undergraduate
thesis. This is my first independent project, in which I not only learn how to do research but also
find my research interests. Prof. Bai always provides me with earnest and useful advice. He has
also supported me greatly on my academic career path. I appreciate my time working with him.

B K-means Clustering

Now we introduce k-means clustering. This is for two reasons. First, k-means clustering shows
another idea of how we can cluster data points. Second, we need k-means clustering to do the
spectral clustering.

In this section, we introduce the mathematical foundation of k-means clustering. We also give
an algorithm for the k-means clustering.

Recognition: the definitions and results come mainly from Chapter 4 of [2].

Clustering Assignment. Suppose we have N n-vector x1,x2, . . . ,xN , and we want to cluster
them into k groups. We label the groups 1, 2, . . . , k and specify the assignment of the given vectors
using ci where ci is the group to which the vector xi is assigned. Let Gj denote the set of indices
corresponding to group j such that Gj = {i | ci = j}.

Example B.1. Let N = 7 and k = 3. Then c = (3, 2, 1, 1, 2, 3, 1) implies that group 1 includes
x3, x4, x7, group 2 includes x2,x5, and group 3 includes x1,x6. Then G1 = {3, 4, 7}, G2 = {2, 4},
G3 = {1, 6}

Clustering Objective. For each group Gi, we call the group representative zi, i = 1, . . . , k. If
xi is in group Gj , j = ci, then the representative vector zci should be close to the vectors in the
related group, that is, ‖xi − zci‖ should be small.

We define

Jclust =
‖x1 − zc1‖

2 + · · ·+ ‖xN − zcN ‖
2

N

which is the mean square distance from the vectors to the representative vector in the same group.
The smaller Jclust is, the better the clustering. If Jclust = 0, then ‖xi − zci‖ = 0 for every i,

which implies that the original vector only takes k distinct values, and every vector xi is assigned
to the representative with the same norm.

Definition B.1. A clustering is optimal if the given c1, . . . cN and z1, . . . , zk induces minimal
Jclust.

Remark B.1. The clustering choices found by the k-means clustering are suboptimal which means
that they might not give the lowest possible value of Jclust.

Theorem B.1. Suppose that the representative vectors are fixed. Then assigning each vector to its
nearest representative induces the minimal Jclust.

61

Proof. Let the representative vectors z1, . . . , zk be fixed. We want to find the group assignments
c1, . . . , cN to minimize Jclust.

Note that Jclust is a sum of N terms. Each choice of ci only affects the term ‖xi−zci‖
N

2

. Then we
only need to choose ci so that ‖xi − zci‖ is minimal. Then over j = 1, . . . k, we choose the proper
j so that we minimize the ‖xi − zj‖.
The mathematical expression of ‖xi − zci‖ becomes

‖xi − zci‖ = min
j=1,...,k

‖xi − zj‖

The value of Jclust becomes the mean of the squared distance from the data vectors to the closest
representative.

Jclust =

min
j=1,...,k

‖x1 − zj‖2 + . . . min
j=1,...,k

‖xN − zj‖2

N

Definition B.2. The cluster centroid is the average of the vectors xi assigned to its group.

zj =

∑
i∈Gj

xi

|Gj |
where |Gj | denotes the number of elements in group Gj.

Example B.2. Suppose group K contains these vectors.

x1 =

80
56
35

 ,x2 =

75
65
68

 ,x3 =

93
45
66

 ,x4 =

68
54
27


Then

∑
i∈Gj

xi =

316
220
196

 and |Gj | = 4.

Thus, z1 =

79
55
49


Theorem B.2. Suppose that the group assignments are fixed. Then choosing zj to be the centroid
of the cluster induces minimal Jclust.

Proof. Let the group assignments Gi, i = k, . . . , N be fixed. We can consider Jclust as a sum of
k terms, where each term is the average of the summation of the form ‖xi − zj‖2 for any i ∈ Gj .
Then

Jclust = J1 + · · ·+ Jk

where

Jj =

∑
i∈Gj

‖xi − zj‖2

N
The choice of zj only affects the term Jj . We can choose each zj to minimize Jj . To do so, we choose
zj to be the cluster centroid. Thus, if the group assignments are fixed, we choose the representative
vector to be the average of the vectors assigned to the group to minimize Jclust.

Now, suppose that neither the group assignment nor the group representatives are fixed. How
do we find the minimal Jclust? The answer is that we can use k-means clustering.

62

Algorithm. The k-means clustering requires us to repeatedly alternate between updating the
assignment of groups and updating the representatives so that Jclust becomes smaller at each step.
We stop if the choices of the group representatives and group assignments do not change.

Algorithm 7 k-means clustering
Input: N vectors x1, . . .xN and k group representative vectors z1, . . . , zk
Output: k clusters of the vectors
1: Randomly pick the initial group representatives from the original vectors.
2: For each vector xi, assign xi to the nearest representative vector, i = 1, . . . , N . If there is a tie,

we we assign xi to the group associated with one of the closest representative with the smallest
value of j.

3: For each group Gj , set zj to the new cluster centroid, j = 1, . . . , k.
4: Repeat the 2 steps above until the changes of Jclust in successive iterations are small.

Remark B.2. If any of the group assignments becomes empty, we simply drop this group and finish
with a partition with fewer than k groups.

We choose k by this rule: The value of Jclust with k is significantly lower than that with k − 1
but not significantly higher than that with k+ 1. For example, suppose that for some x1, . . . ,xN , we
have Jclust with k = 5 is 10, Jclust with k = 6 is 9, Jclust with k = 7 is 5, and Jclust with k = 8 is
4.5. Then we should choose k = 7.

Program. The following codes present how we can apply the k-means algorithm in MATLAB.
Each sub-function corresponds to one step of the k-means algorithm.
Here is the MATLAB code.

function [idx,C] = mykmeans(X,k,n)
init_centroid = pick_initial_centroids(X,k);
index = find_centroids(X,init_centroid,k);
centroids = compute_centroids(X,index,k);
[idx,C]=repeat_step(X,centroids,n,k);

%step 1: we randomly pick the representatives from the original vectors
function init_centroid = pick_initial_centroids(X,k)
random_number = randperm(size(X,1));
init_centroid = X(random_number(1:k),:);
end

%step 2: compute j where j is the group label to which x_i is assigned
%j = 1,...,k
function index = find_centroids(X,init_centroid,k)
index = [];
for i = 1:length(X)

for j = 1:k
dist(j) = norm(X(i,:)-init_centroid(j,:),2);
end
newindex = find(dist == min(dist));
index = [index,newindex];

end

63

index = index’;
end

%step 3:compute the group representative z_j for each group j = 1,...,k
%z_j is the mean of the vectors x_i in its group
function centroids = compute_centroids(X,index,k)
for i = 1:k

newindex = find(index == i);
num = length(newindex);
centroids(i,:) = sum(X(newindex, :)) / num;

end
end

%step 4: repeat step 1 and step 2 until J^{clust} gets stable
function [newidx,newcentroids1]=repeat_step(X,centroids,n,k)
centroids1 = centroids;
for i = 1: length(n)

newidx = find_centroids(X,centroids1,k);
centroids1 = compute_centroids(X,newidx,k);
newcentroids1 = centroids1;

end
end
end

Lemma B.1. Suppose that the vectors x1, . . . ,xN are clustered using the k-means algorithm with
group representatives z1, . . . , zk. If the entries of the vectors xi are nonnegative and sum to one,
then the entries of the representatives zj are also nonnegative and sum to one.

Proof.

zj =

∑
i∈Gj

xi

|Gj |
Since the entries of every xi are nonnegative,

∑
i∈Gj

xi is nonnegative. Also, |Gj | is positive.

Therefore, the the entries of the representatives zj are also nonnegative.

The entries of xi sum up to one. Then 1Txi = 1.

1T zj = 1T

∑
i∈Gj

xi

|Gj |

=
1

|Gj |
∑
i∈Gj

1Txi

=
1

|Gj |
∑
i∈Gj

1

=
1

|Gj |
|Gj |

= 1

64

Therefore, the entries in zj also sum to one.

Lemma B.2. Suppose that the vectors x1, . . . ,xN are clustered using the k-means algorithm with
group representatives z1, . . . , zk. If the vectors xi are Boolean, then the ith entry of the j group
representative, which is (zj)i, is 1, 0, or a fraction.

Proof. If all vectors in a group Gj are 1, then the group representative zj is 1.

zj =

∑
i∈Gj

xi

|Gj |
=

1

|Gj |
(|Gj |1) = 1

If all the vectors in a group Gj are 0, then the group representative zj is 0.

zj =

∑
i∈Gj

xi

|Gj |
=

1

|Gj |
0 = 0

If some vectors in Gj are 1 and others are 0, then zj is a fraction.
Therefore, the ith entry of zj is 0, 1, or a fraction.

Compare the k-means Clustering and spectral Clustering. The k-means clustering and
spectral clustering represent two approaches for clustering.

The k-means clustering focuses on the compactness of the graph. Therefore, points close to each
other are grouped together and are compact around the group representatives.

The advantages of k-means clustering include the following:

• It is simple to implement.

• It is relatively computationally cheap as its time complexity is O(kNn) where k is the number
of groups, N is the number of vectors, and n is the size of the vectors.

The disadvantages of k-means clustering include the following:

• With different initial representatives, the algorithm may result in different final group assign-
ments and group representatives.

• It cannot guarantee that it finds the partition that induces the minimal Jclust.

• Calculating the Euclidean norm in high dimensions can be difficult.

Spectral clustering focuses on the connectivity of the graph. Therefore, only connected points are
grouped together. Even if two points are close to each other, as long as they are disconnected, they
can be put into different clusters.

The advantages of spectral clustering include:

• It gives relatively good clustering results and can correctly cluster points that actually belong
to the same cluster.

• It does not make any assumptions on the cluster shapes.

65

• It does not necessarily require the data set.

The disadvantages of spectral clustering include:

• It is very sensitive to the change of eigenvectors in the Laplacian matrix. So even if we shift
the Laplacian matrix by a small constant, the result may not be perfect.

• It is computationally expensive. It is shown that its complexity is O(n3) in general, where n
is the number of data points. For large and dense data sets, computing the eigenvalues and
eigenvectors of a large matrix takes a lot of time.

Example B.3. Here is an example of how the k-means algorithm clusters 1500 2-vectors into 3
groups. The MATLAB code

rng("default")
k = 3;n =10000;
X = [randn(500,2)*0.75;randn(500,2)*0.5;randn(500,2)*0.65];

[idx,C] = mykmeans(X,k,n);

figure
gscatter(X(:,1),X(:,2),idx,"cgr");
hold on
plot(C(:,1),C(:,2),"kx")
legend("cluster 1","cluster 2","cluster 3","cluster centroid")
title("my k-means clustering")
hold off

printed the following

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
my k-means clustering

cluster 1

cluster 2

cluster 3

cluster centroid

Figure 19: K-means clustering

Example B.4. Here is an example of two concentric circles. The k-means algorithm does not
distinguish different circles and provides a bad solution . In comparison, spectral clustering gives a

66

good solution, which is consistent with the example given above.
The MATLAB code

N = 800;
r1 = 2; r2 = 4;
theta = linspace(0,2*pi,N)’;

X1 = r1*[cos(theta),sin(theta)]+ rand(N,1);
X2 = r2*[cos(theta),sin(theta)]+ rand(N,1);
X = [X1;X2];

%run the k-means algorithm
k=2; n = 1000;
[idx,C] = mykmeans(X,k,n);

ax1 = subplot(2,1,1);
gscatter(X(:,1),X(:,2),idx,"cy");
hold on
plot(C(:,1),C(:,2),"kx")
legend("cluster 1","cluster 2", "cluster centroid")
title(ax1,"k-means clustering")
idx1 = spectralcluster(X,2);
%we use spectral clustering to cluster
ax2 = subplot(2,1,2);
gscatter(X(:,1),X(:,2),idx1,"cy");
legend("cluster 1","cluster 2")
title(ax2, "spectral clustering")

printed the following

-4 -3 -2 -1 0 1 2 3 4 5

-4

-2

0

2

4

6
k-means clustering

cluster 1

cluster 2

cluster centroid

-4 -3 -2 -1 0 1 2 3 4 5

-4

-2

0

2

4

6
Spectral clustering

cluster 1

cluster 2

Figure 20: Comparison between k-means clustering and spectral clustering

67

C MATLAB Codes for Different Functions

C.1 Similarity Graph: Epsilon-Neighborhood Graph

The following codes present how we can use the similarity matrix to get the ε-neighborhood
graph.

Firstly, we use the MATLAB function pdist(X) where X contains n data points to calculate the
pairwise distance of the data points in set X so that we get a vector D ∈ R

n(n−1)
2 such that

D =
[
‖v1 − v2‖ ‖v1 − v3‖ . . . ‖vn−1 − vn‖

]
Then we use the MATLAB function squareform(D) to transform D into a n × n symmetric

matrix S. The function will first create a n×n zero matrix. In the first row of the upper triangular
part of the matrix, we place the first n − 1 entries of D in order. In the second row of the upper
triangular part of the matrix, we place the next n− 2 entries of D. We repeat the process until we
put the last entry of D in the last row of the upper triangular part of the matrix. Then we create
the lower triangular part of the matrix to build the corresponding symmetric matrix S using the
upper triangular part of the matrix.

After that, we translate every entry of S into 1 or 0. If it is greater than the threshold ε > 0,
then it is 1. Otherwise, it is 0.

Here is the MATLAB code.

function S = similarity(X,epsilon)
D = pdist(X);
S = squareform(D);
S_row = size(S,1);
S_col = size(S,2);
for i = 1: S_row

for j = 1:S_col
if S(i,j) < epsilon && i ~=j

S(i,j) = 1;
else

S(i,j)=0;
end

end
end
end

C.2 Unnormalized Spectral Clustering

function idx1 = my_unnormalized_sc(S,k)
D = diag(sum(S,2));
L = D - S;
[v,e] = eig(L);
U = v(:,1:k);
idx1 = kmeans(U,k);
end

68

C.3 Normalized Spectral Clustering using Lrw

function idx1 = my_normalized_sc_rw(S,k)
D = diag(sum(S,2));
L = D - S;
[v, e] = eig(L,D);
U = v(:,1:k);
idx1 = kmeans(U,k);
end

C.4 Normalized Spectral Clustering with Lsym

function idx1 = my_normalized_sc_sym(S,k)
n = size(S,1);
D = diag(sum(S,2));
D1 = diag(sum(S,2).^(-1/2)); %D^(-1/2)
L = D - S;
L_sym = D1 * L * D1;
[v,~] = eig(L_sym);
U = v(:,1:k);
T = zeros(n,k);
for i = 1: n

for j = 1:k
sum1 = sum((U(i,k)).^2);
T(i,j) = U(i,j)/((sum1).^(1/2));

end
end
idx1 = kmeans(T,k);
end

C.5 Normalized Spectral Clustering with Group Fairness Constraints

Appendix A of [7] provides the algorithm for normalized spectral clustering. In addition, [7]
provides the corresponding MATLAB code in the file Fair_SC_normalized.m.

We build our MATLAB code for the fair version of normalized spectral clustering based on the
algorithm and code [7] provides. The main change between our code and [7]’s is that instead of
their input "sensitive", we require an input F ∈ Rn×(h−1) defined by Equation (10.4).

function clusterLabels = Fair_SC_normalized(adj,k,F)
%adjis the adjacency matrix of size n x n
%k is number of clusters
%F = [f^(1) - |v_1| / |v| * 1_n ... f^(h-1) - |v_(h-1)| / |v| * 1_n]
%compute the Laplacian matrix L
D = diag(sum(adj,2));
L = D - adj;

%compute a matrix Z whose columns form an orthogonal basis of null(F^T)
Z = null(F’);

69

https://github.com/matthklein/fair_spectral_clustering/blob/master/Fair_SC_normalized.m

%compute the principal square root Q of Z’ D Z
Q=sqrtm(Z’*D*Z);

%compute the first k eigenvectors of Q^(-1)*Z^T*L*Z*Q^(-1)
Qinv=inv(Q);
Msymm=Qinv’*Z’*L*Z*Qinv;
Msymm=(Msymm+Msymm’)/2;

% "smallestabs" and "smallestreal" both find the first k eigenvalues but with
%different methods related to the Krylov method
% "maxiterations" gives the maximum number of iterations
% "SubspaceDimension" gives the number of basis vectors

try
[Y, eigValues] = eigs(Msymm,k,’smallestabs’,’MaxIterations’, ...

500,’SubspaceDimension’,min(size(Msymm,1),max(2*k,25)));
catch

[Y, eigValues] = eigs(Msymm,k,’smallestreal’,’MaxIterations’,...
1000,’SubspaceDimension’,min(size(Msymm,1),max(2*k,25)));

end

%apply k-means clusteirng to the rows of H = Z Q^(-1) Y
%Y is a matrix containing these eigenvectors
H = Z*Qinv*Y;
clusterLabels = kmeans(H,k,’Replicates’,10);
end

C.6 Normalized Spectral Clustering with Individual Fairness Constraints

function clusterLabels = Fair_SC_normalized_individual(adj,k,RJ)
% RJ = R * J
D = diag(sum(adj,2));
L = D - adj;

[U, S, V] = svd(RJ);
r = rank(RJ);
F = sqrt(S) * V’; F = F(1:r, :)’;

Z = null(F’);

Q=sqrtm(Z’*D*Z);

Qinv=inv(Q);
Msymm=Qinv’*Z’*L*Z*Qinv;
Msymm=(Msymm+Msymm’)/2;

[Y, eigValues] = eigs(Msymm,k);

70

H = Z*Qinv*Y;
clusterLabels = kmeans(H,k,’Replicates’,10);
end

71

	I Preliminaries
	Graph and Laplacian Matrix
	Graph Theory
	Laplacian Matrix

	Connectivity
	Connected Graph and Connected Components
	Relationship between Laplacian Matrix and Connectivity

	Relationship between Laplacian Matrix and Sparsest Cut

	II Spectral Clustering
	Weighted Laplacian Matrix
	Unnormalized Spectral Clustering
	Ratio cut and Unnormalized Spectral Clustering
	Normalized Spectral Clustering
	Normalized Laplacian Matrix
	Algorithms

	Normalized Cut and Normalized Spectral Clustering
	Advantages of Normalized Spectral Clustering over Unnormalized Spectral Clustering

	III Fairness and Fair Spectral Clustering
	Group Fairness
	Definition
	Matrix Representation
	Consistency Analysis

	Normalized Spectral Clustering with Group Fairness Constraints
	Model
	Numerical Experiment

	Individual Fairness
	Definition
	Relationship between Individual Fairness and Group Fairness
	Matrix Representation
	Consistency Analysis

	Normalized Spectral Clustering with Individual Fairness Constraints
	Model
	Numerical Experiment

	IV Appendix
	Acknowledgement
	K-means Clustering
	MATLAB Codes for Different Functions
	Similarity Graph: Epsilon-Neighborhood Graph
	Unnormalized Spectral Clustering
	Normalized Spectral Clustering using
	Normalized Spectral Clustering with
	Normalized Spectral Clustering with Group Fairness Constraints
	Normalized Spectral Clustering with Individual Fairness Constraints

