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Introduction / Motivation

Undeniably, the sphere Sn is one of the simplest topological space that one can imagine in their mind

(most likely without visualizing them). It is described with one quadratic equation in Rn+1. However,

we still cannot completely understand their relationships. For example, consider the following object.

Definition 0.1 Given i, n ≥ 0, we define the higher homotopy group πi(S
n) = [Si, Sn] to be the

group of homotopy classes of maps Si → Sn. We want to keep the introduction simple, so we will not

define the group operation here, see [1, Chapter 9] for the detail.

The groups πi(S
n) for i < n are all trivial. However, no known rules exist to compute, in general,

πi(S
n) for i ≥ n both large. The group π3(S

2) contains the Hopf fibration (see Section 1.6) and hence is

nontrivial. In fact, π3(S
2) = Z.

Computations of these (and many other things, of course) eventually leads to the invention of new

techniques to try to tackle them. One of them, and unarguably the most well-known one, is the notion

of a spectral sequence, and most notably, the Adams spectral sequence. The amount of information a

spectral sequence holds is huge. For example, every spectral sequence has three indices to keep tracks

with, and the differentials keep changing direction as we “move along” the sequence. As with ordinary

sequence (of numbers), a spectral sequence sometimes can only approximate the thing we are trying

to compute, instead of actually computing it (and this is what the notion of convergence entails). Just

like ordinary sequences, a spectral sequence doesn’t need to have each term written explicitly. There

is something analogous to the notion of a recurrence relation called the exact couple and is used very

often to bypass telling you an “explicit formula” for each term. All in all, a spectral sequence, in most

contexts, is often difficult to visualize.

The Leray spectral sequence is a very general, and hence abstract, class of spectral sequences. However,

as shown in [2], there is a very particular context in which we can actually visualize it using linear algebra:

the Leray spectral sequence associated to a simplicial map. Also, as long as we uphold some finiteness

condition (more precisely, every simplex complex is finite), this Leray spectral sequence will be finite,

that is, it stabilizes after finitely many terms. In other words, you don’t just get an approximation; you

get the actual thing you want to compute.

In this paper, we will study this spectral sequence using basic linear algebra. After stating all the

preliminary content and the Leray spectral sequence, three elementary examples will be provided to

visualize this sequence in practice: the two double covers of S1, as well as the projection S1 × S1 → S1.

We choose these particular examples simply because they have some of the simplest triangulations

(although the projection is a little bit more involved). Many diagrams will also be provided throughout

to facilitate the visualization. We will end this paper with some discussion about the Hopf fibration.

More precisely, we will give a minimal triangulation of the Hopf fibration and briefly discuss the Leray

spectral sequence associated to it.
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Spectral Sequence for Simplicial Maps

In this section, we will provide a linear-algebra perspective on this subject by studying one particular

spectral sequence in the context of simplicial complexes. Section 1.1 serves as a foundation of this section

by providing all the definitions we will need about simplicial homology. Section 1.2 and 1.3 will be devoted

to the general theory of spectral sequence and defining the Leray spectral sequence. Section 1.4 and 1.5

will be devoted to computation of the Leray spectral sequences using concrete elementary examples so

that they can be done essentially by hand. Section 1.6 consists of a discussion about the Hopf fibration

and a simplicial approximation. We end it with an short and informal discussion on a comparison with

a well-known result after trying to compute the Leray spectral sequence of Hopf fibration.

1.1 Preliminary: Simplicial Homology

This subsection will serve as the backbone of the entire section. We will begin by a review on the

definition of homology. Then we will spend some time to develop the basic notions about simplicial

complex. Finally, we will define the simplicial homology, which effectively gives the main linkage between

the two parts.

Definition 1.1.1 Fix an ambient ring R. By a chain complex (of R-modules) C•, we mean a sequence

of R-modules

· · · → Ci+1
di+1−−−→ Ci

di−→ Ci−1 → · · ·

such that di ◦ di+1 = 0 (or equivalently, im(di+1) ⊆ ker(di)). The maps di are called boundary maps.

Note that the definition can be generalized easily to any abelian category.

Definition 1.1.2 Given a chain complex C•, an n-cycle is an element in ker(dn) and an n-boundary

is an element in im(dn+1). The n-th homology is the R-module

Hn(C•) = ker(dn)/ im(dn+1)

(i.e., cycle mod boundary). The total homology is the R-module H∗(C•) =
⊕

i∈Z Hi(C•).

To simplify notation, it is accustomed to suppress the subscripts on boundary maps, as it often can be

read easily from the context.

Next up, we will discuss the notion of a simplicial complex and simplicial maps for our next important

building block.

Definition 1.1.3 An (abstract) simplicial complexX consists of a finite set V (X) (called the vertex

set) together with a collection of subsets S(X) of V (X) satisfying the following conditions:

(i) if v ∈ V (X) then {v} ∈ S(X);

(ii) if σ ∈ S(X) and τ ⊆ σ is nonempty then τ ∈ S(X).

Given an integer p, a p-simplex is an element σ ∈ S(X) such that |σ| = p+ 1. We also say in this case

that the dimension of σ is p. A subcomplex of X consists of a subset of V (X) and a subset of S(X)

such that they form a simplicial complex on their own.
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1.1 Preliminary: Simplicial Homology 3

A simplicial complex is a combinatorial way to study a topological space. More precisely, a simplicial

complex is what we get by triangulating a space (if this can actually be done). We can make sense of

this formally using the geometric realization construction. The intuition behind geometric realization

is simple. Given a p-simplex σ, we can think of it as a p-dimensional tetrahedron whose vertices are

elements in σ, whose edges are the subsets of σ with size 2, and (in general) whose i-dimensional faces

are the subsets of σ with size i+ 1. Then we can just glue all the tetrahedrons together. More formally

speaking:

Definition 1.1.4 (i) A set of points {a1, · · · , an} in RN is said to be affinely dependent if there

exist λ1, · · · , λn ∈ R, not all zero, such that λ1a1+ · · ·+λnan = 0 and λ1+ · · ·+λn = 0. Otherwise,

these points are affinely independent. In particular, any set of linearly independent points is

affinely independent.

(ii) Given an integer p, the standard p-simplex ∆p is the convex hull of p + 1 affinely independent

points in Rp+1. Up to homeomorphism, one can simply pick the points e1 = (1, 0, · · · , 0), · · · , ep+1 =

(0, · · · , 0, 1) in Rp+1 to span the convex hull. In particular, ∆2 is a (solid) triangle and ∆3 is a (solid)

tetrahedron.

Definition 1.1.5 (Geometric Realization) Given an abstract simplicial complex X, we let N ≥
|V (X)| and choose an embedding of V (X) into |V (X)| affinely independent points in RN . Identify each

p-simplex of X with the standard p-simplex ∆p (the convex hull of the corresponding p+1 points). The

geometric realization |X| is the topological space given by the union of all the standard simplices as

we run through all simplices in S(X).

Definition 1.1.6 A topological space X is triangulable if there is a simplicial complex X̃ such that

|X̃| ∼= X. In this case, we call X̃ a triangulation of X.

Remark 1.1.7 If the reader is familiar with CW-complexes, then the geometric realization can also be

visualized in the same way, except we are now attaching (higher-dimensional) tetrahedrons instead of

balls. Even better, the geometric realization is in fact a CW-complex, because ∆p is homeomorphic to

the p-ball Dp. Note of terminology: some people uses the word simplicial complex to mean the geometric

realization of an abstract simplicial complex. But for us, a simplicial complex will always mean the

abstract one.

After some formal discussion with trianguable spaces, let’s return to the basic and define a couple more

things that will be used throughout the paper.

Definition 1.1.8 Given a simplicial complexX and an integer n, the n-skeleton ofX is the subcomplex

Xn consisting of all p-simplices with p ≤ n. Just as a matter of fact: the skeletons form an increasing

filtration

X0 ⊆ X1 ⊆ X2 ⊆ · · ·

that terminates to the right with X.

Definition 1.1.9 Given two simplicial complexes X and Y , a simplicial map f : X → Y is a function

f : V (X) → V (Y ) such that for each simplex σ ∈ S(X), we have f(σ) ∈ S(Y ). Simplicial complexes

and simplicial maps form a category SimComp. With some effort, one can check that the geometric

realization defines a functor | − | : SimComp → Top.

Next up is just a technical remark.

Remark 1.1.10 (How to get a simplicial map, at least in theory) Let X,Y be simplicial com-

plexes and ϕ : |X| → |Y | a continuous function between their geometric realizations.

(i) For any v ∈ X, we define the star of v, denoted by st v, to be the union of all simplices containing

v as a vertex. (Note: st v needs not be a subcomplex in general.)

(ii) A simplicial map f : X → Y is a simplicial approximation of ϕ if for every vertex v ∈ V (X),

we have

ϕ(st v) ⊆ st f(v)
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(Note: We identify, with an abuse of notation, st v and st f(v) with their corresponding subspace

in |X| and |Y |, respectively.) In this case, we also have ϕ ≃ |f |, where ≃ indicates homotopy.

(iii) (Simplicial Approximation Theorem) For n sufficiently large, there is a simplicial map f :

Sdn(X) → Y approximating ϕ, where Sd is the (berycentric) subdivision functor SimComp →
SimComp that sends a simplicial complex to a “more-refined version” of itself. More precisely, we

can define it as follows. Let FinPos be the category of finite posets and monotone functions. Let

U : SimComp → FinPos be the forgetful functor X 7→ S(X). Given a (finite) poset (P,≤), a flag

of P is a chain of elements p1 ≤ p2 ≤ · · · ≤ pm. Then we can assoiate (P,≤) with the simplicial

complex whose vertex set is P and simplices are the flags in P . This assignment is functorial, so we

have a functor Fℓ : FinPos → SimComp. Then define Sd = Fℓ ◦U . Bypassing all the categorical

terms, Sd(X) is the simplicial complex whose vertices are exactly the simplicies of X and whose

simplices (of Sd(X)) are chains of inclusions of simplices of X. We shall also point out (according

to [4]) that the canonical map

g : V (X) → V (Sd(X))

v 7→ {v}

induces a homeomorphism |g| : |X| ∼= |Sd(X)| (not too obviously).

Every simplicial complex can be associated naturally with a chain complex. This ties up a connection

between the two seemingly-unrelated concepts that we just introduced.

Definition 1.1.11 Let X be a simplicial complex.

(i) Fix a total order on the vertex set V (X). For a p-simplex σ, the orientation of σ is the ordering

on the elements of σ given by the total order on V (X).

(ii) Given an integer p, define Cp(X) to be the C-vector space with basis {σ ∈ S(X) : |σ| = p + 1},
the set of all p-simplices. If σ = {σ0 < · · · < σp} is a p-simplex, then we write [σ0, · · · , σp] (in

this particular order) for the basis element of Cp(X) corresponding to σ. Define a C-linear map

dp : Cp(X) → Cp−1(X) on basis by

dp([σ0, · · · , σp]) =

p∑
i=0

(−1)i[σ0, · · · , σ̂i, · · · , σp]

(and extend by C-linearity), where ̂ indicates omission.

(iii) If γ ∈ Sp+1 is a permutation of the set {0, · · · , p}, then we define

[σγ(0), · · · , σγ(p)] = sgn(γ)[σ0, · · · , σp],

where sgn(γ) (sometimes also written as (−1)γ) is the sign of the permutation γ.

Example 1.1.12 The sign rule (iii) above allows bigger flexibility when writing down a basis element

in Cp(X). It can be useful in some situation, like identifying cycles within a simplicial complex, which

can be used to identify the kernel of the boundary map. For example, in the triangulation

1

2

3

1

3

2
4

5 6

of RP 2 (in which all the triangles are 2-simplices), we can see that the edges [1, 3], [3, 2], [2, 5], [5, 4],

[4, 1] form a loop, so d([1, 3] + [3, 2] + [2, 5] + [5, 4] + [4, 1]) = 0. The sign rule above allows us to convert

[1, 3] + [3, 2] + [2, 5] + [5, 4] + [4, 1] to an actual element [1, 3]− [2, 3] + [2, 5]− [4, 5]− [1, 4] in C1 with the

cost of minus signs. (For those who wonder: This triangulation is obtained from the fact that RP 2 is the

same thing as the disk D2 but identifying antipodal points on the boundary circle.)
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Remark 1.1.13 When the vertices of a simplicial complex is labelled as 1, 2, 3, · · · , the orientation of

a simplex is, by convention, given by the usual ordering on N. We will label the vertices of a simplicial

complex with N as much as possible, but in some occasion a different labelling makes thing clearer, as

we shall see later in this section.

Lemma 1.1.14 With the notation in Definition 1.1.11, C•(X) defines a chain complex. In particular,

the homology of C•(X) is called the simplicial homology of X (or |X|). We simply write Hn(X) for

the n-th simplicial homology of C•(X) and write H∗(X) for the total simplicial homology.

Proof Let σ be a p-simplex. Then

dp−1dp([σ0, · · · , σp])

= dp−1

(
p∑

i=0

(−1)i[σ0, · · · , σ̂i, · · · , σp]

)

=

p∑
i=0

(−1)idp−1([σ0, · · · , σ̂i, · · · , σp])

=

p∑
i=0

(−1)i

∑
j<i

(−1)j [σ0, · · · , σ̂j , · · · , σ̂i, · · · , σp] +
∑
j>i

(−1)j−1[σ0, · · · , σ̂i, · · · , σ̂j , · · · , σp]


=

p∑
i=1

∑
j<i

(−1)i+j [σ0, · · · , σ̂j , · · · , σ̂i, · · · , σp] +

p∑
j=1

∑
j<i

(−1)i+j−1[σ0, · · · , σ̂j , · · · , σ̂i, · · · , σp]

= 0,

where, in the second-last line, we interchange the indices i and j in the second sum so that it is apparent

on why the two sums cancel out. Therefore d2 = 0, as desired. □

Remark 1.1.15 The simplicial homology of a simplicial complex X agrees with the singular homology

of |X| (though showing this requires quite a bit of effort). Thus, if Y is another triangulations of |X|,
then it turns out that Hn(X) = Hn(Y ). In particular, the simplicial homology of a trianguable space is

well-defined (independent of the choice of triangulation).

1.2 What Is a Spectral Sequence?

In this subsection, we will define, following [5], spectral sequences in the category of finite-dimensional

vector spaces. We shall simply note here that the definition can be generalized to any abelian category

for the broadest generality.

Definition 1.2.1 Fix an ambient field k. A Z-graded (resp., (Z,Z)-bigraded) k-vector space E∗ (resp.,

E∗,∗) is a vector space of the form

⊕
p∈Z

Ep

resp.,
⊕
p,q∈Z

Ep,q


where each summand is a k-vector space.

All graded (resp., bigraded) objects that we will considered are Z-graded (resp., (Z,Z)-bigraded), so we

will drop the prefix from now on. An N-graded (resp., (N,N)-bigraded) vector space is automatically

Z-graded (resp., (Z,Z)-bigraded) by inserting the zero vector space in the remaining slots.

Definition 1.2.2 A spectral sequence of k-vector spaces of homological type consists of

(i) a collection of bigraded vector spaces E = {E∗,∗
r }r (so yes, a spectral sequence is technically

trigraded);
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(ii) for each p, q, r, there is a (linear) map

dp,qr : Ep,q
r → Ep−r,q+r−1

r

called a differential with bidegree (−r, r − 1),

such that dr ◦ dr = 0 whenever the composition makes sense (to simplify notation, we have suppressed

all the superscripts). We also require

Ep,q
r+1

∼= ker(dr : Ep,q
r → Ep−r,q+r−1

r )/ im(dr : Ep+r,q−r+1
r → Ep,q

r ).

The index r of {E∗,∗
r }r can begin at any integer that one finds convenient, but commonly it starts at

either 0, 1, or 2. For any fixed r, the bigraded space E∗,∗
r is called the Er-page of the spectral sequence.

Remark 1.2.3 (i) Note that the Er-page together with the differentials dr determine the Er+1-page

(up to isomorphism) but not the differentials dr+1.

(ii) It is often useful to think of a spectral sequence as a (infinite) book. The r-th page of the book is

just the Er-page of the spectral sequence, where each Ep,q
r constitutes a word in that page. Flipping

to the (r + 1)-th page is equivalent to taking homology at every word on the r-th page.

A spectral sequence of cohomological type is define analogously, except now the differentials have

bidegree (r, 1− r).

To help us better understand spectral sequence (of homological type), it is often useful to draw it on

a grid. We picture Ep,q
r sitting in position (p, q) on the Er-page. Conventionally, (p, q) is meant to

understand as a coordinate, in contrast to a matrix entry. For example, the E0-page looks like

E−2,4
0 E−1,4

0 E0,4
0 E1,4

0 E2,4
0

E−2,3
0 E−1,3

0 E0,3
0 E1,3

0 E2,3
0

E−2,2
0 E−1,2

0 E0,2
0 E1,2

0 E2,2
0

E−2,1
0 E−1,1

0 E0,1
0 E1,1

0 E2,1
0

E−2,0
0 E−1,0

0 E0,0
0 E1,0

0 E2,0
0

E−2,−1
0 E−1,−1

0 E0,−1
0 E1,−1

0 E2,−1
0

d d d d d

d d d d d

d d d d d

d d d d d

d d d d d

.
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The E1-page looks like

E−2,4
0 E−1,4

0 E0,4
0 E1,4

0 E2,4
0

E−2,3
0 E−1,3

0 E0,3
0 E1,3

0 E2,3
0

E−2,2
0 E−1,2

0 E0,2
0 E1,2

0 E2,2
0

E−2,1
0 E−1,1

0 E0,1
0 E1,1

0 E2,1
0

E−2,0
0 E−1,0

0 E0,0
0 E1,0

0 E2,0
0

E−2,−1
0 E−1,−1

0 E0,−1
0 E1,−1

0 E2,−1
0

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

.

The E2-page looks like

E−2,4
0 E−1,4

0 E0,4
0 E1,4

0 E2,4
0

E−2,3
0 E−1,3

0 E0,3
0 E1,3

0 E2,3
0

E−2,2
0 E−1,2

0 E0,2
0 E1,2

0 E2,2
0

E−2,1
0 E−1,1

0 E0,1
0 E1,1

0 E2,1
0

E−2,0
0 E−1,0

0 E0,0
0 E1,0

0 E2,0
0

E−2,−1
0 E−1,−1

0 E0,−1
0 E1,−1

0 E2,−1
0

d d d

d d d

d d d

d d d

d d d

.

(Of course, these pages extend to infinity in all directions.)

Here is one more terminology to describe a spectral sequence.

Definition 1.2.4 A spectral sequence {E∗,∗
r }r is first-quadrant if in each page, Ep,q

r = 0 for all p, q < 0.

We now state the notion of convergence of a spectral sequence. The one in the following can be generalized

to any abelian category. However, this turns out to be way too broad for our purpose. We will then provide

an alternative way of convergence that’s well-fit to our situation.

Definition 1.2.5 Let E = {E∗,∗
r }r be a first-quadrant spectral sequence. Then by first-quadrantness,

for all p, q ∈ Z there is an r0 = r0(p, q) sufficiently large such that for any r ≥ r0, the Ep,q
r -spot of the

spectral sequence looks like

0

Ep,q
r

0

d

d

.
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(The assumption on first-quadrantness can be reasonably weaken to allow finitely many nonzero entries

in other quadrants, but many spectral sequences in practice are predominantly first-quadrant.) In this

case, we have Ep,q
r = Ep,q

r+1 = · · · (because the kernel of the upper map is everything, while the image of

the lower map is 0). Let Ep,q
∞ be this common value. We say that the spectral sequence E converges to

a graded vector space H∗ if there is a decreasing filtration F • on H∗ such that

Ep,q
∞

∼= F pHp+q/F p+1Hp+q

or an increasing filtration F • such that

Ep,q
∞

∼= F pHp+q/F p−1Hp+q.

(Note: the increasing-ness and decreasing-ness of a filtration should only be seen as a technicality of the

definition, in the sense that the filtration often has finite length ad hence the two notions are equivalent.)

Similar to ordinary sequence of numbers, as N → ∞, the EN -page approximates H∗. But what if the

sequence actually lands onto the limit?

Definition 1.2.6 A spectral sequence {E∗,∗
r }r collapses at the EN -page if dr = 0 for all r ≥ N . This

will always be the case for us, due to the fact that we will only deal with spectral sequences with finitely

many nonzero entries.

Remark 1.2.7 (Convergence of Collapsed Spectral Sequences) Suppose a (first-quadrant or not)

spectral sequence E = {E∗,∗
r }r collapses on the EN -page. Then every spot of the spectral sequences sta-

bilizes (i.e., Ep,q
N = Ep,q

∞ for all p, q). From here, it is not hard to deduce that E converges in the sense

of Definition 1.2.5. Namely, you take the whole EN -page as the space H∗. (Note: Every bigraded vector

space can be seen as a graded vector space by, for example,
⊕

p,q∈Z E
p,q =

⊕
q∈Z E

∗,q, where for any fixed

q, E∗,q =
⊕

p∈Z E
p,q.) We will leave it to the interested reader to convince themselves that a suitable

filtration F • of H∗ can then be constructed canonically to do the job.

1.3 The Leray Spectral Sequence

Historically, the Leray spectral sequence is one of the earliest spectral sequences ever invented, and

it specializes to some other well-known spectral sequences like the Serre spectral sequence of a Serre

fibration. we now explain an explicit form of the Leray spectral sequence for simplicial maps, as explained

in [2]. The description of each Er-term is given in Theorem 1.3.7. We give a convergence result in Theorem

1.3.9. Proofs of both theorems will not be reproduced in this paper, and the relevant reference is given

instead. To see how this Leray spectral sequence is specialized from the general version using Leray

cosheaf, see [2, Section 3].

Definition 1.3.1 Let X and Y be simplicial complexes and f : X → Y a simplicial map. Write Y n

for the n-skeleton of Y and Xn = f−1(Y n). Given integers p, q, we define Xp,q to be the set of all

(p+ q)-simplices in Xp. Let Cp,q be the subspace of Cp+q(X) spanned by Xp,q.

The boundary map restricts to various maps between the Cp,q’s. We will give a proof to the following

one so that the reader can see what is happening. The same logic applies to give the next, more general,

corollary.

Proposition 1.3.2 The boundary map d : Cp+q(X) → Cp+q−1(X) restricts to a map d : Cp,q → Cp,q−1.

Proof Let σ ∈ Xp,q, which is a (p+ q)-simplex in Xp. Let σ
′ be a simplex obtained from σ by deleting

an element. It is thus a (p + q − 1)-simplex. Although the dimension of f(σ′) might be lower than the

dimension of f(σ), it is still within the same skeleton of f(σ). Therefore, the restricted map d maps every

basis element of Cp,q to a linear combination of basis elements of Cp,q−1, as desired. □
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Corollary 1.3.3 For a fixed integer r, the boundary map d : Cp+q(X) → Cp+q−1(X) restricts to a map

d : Cp−r,q+r → Cp−r,q+r−1. Therefore, the following diagram

· · · Cp−r,q+r+1 Cp−r,q+r Cp−r,q+r−1 · · ·

· · · Cp,q+1 Cp,q Cp,q−1 · · ·

· · · Cp+r,q−r+1 Cp+r,q−r Cp+r,q−r−1 · · ·

· · · Cp+q+1(X) Cp+q(X) Cp+q−1(X) · · ·

d d

d d

d d

d d

commute.

To define the Leray spectral sequence, we will need to define a few more terms.

Definition 1.3.4 Given integers p, q, r, define Bp,q
r to be the subspace of Cp,q given by

Bp,q
r = Cp,q ∩ d(Cp+r,q−r+1)

and define Zp,q
r to be the subspace of Cp,q given by

Zp,q
r = Cp,q ∩ d−1(Cp−r,q+r−1),

where both d’s are taken as the d’s appearing in the lowest row in the commutative diagram in Corollary

1.3.3 (i.e., the d that appears in the chain complex C•(X)).

Warning 1.3.5 We want to clear a potentially major mistake the reader might have at this point.

Namely, the map d in the definition of Bp,q
r can be taken as the d appearing on the third row in the

commutative diagram in Corollary 1.3.3. There is no harm to do so. However, the map d in the definition

of Zp,q
r must be taken as the chain complex one. There is a problem if one take it as the one on the first

row in the commutative diagram in Corollary 1.3.3. Namely, the d’s on the first row are obtained via

restrictions of the d’s on the lowest row, so when taking the preimage of Cp−r,q+r−1, we don’t necessarily

land perfectly inside Cp−r,q+r. In fact, (iii) in the following proposition will not be true if we take the

wrong d.

Proposition 1.3.6 Given integers p, q, r, we have

(i) Zp−1,q+1
r−1 ⊆ Zp,q

r ;

(ii) Bp,q
r−1 ⊆ Bp,q

r ;

(iii) Bp,q
r ⊆ Zp,q

r .

Proof

(i) Let z ∈ Zp−1,q+1
r−1 = Cp−1,q+1 ∩ d−1(C(p−1)−(r−1),(q+1)+(r−1)−1). Since Cp−1,q+1 ⊆ Cp,q (every

(p + q)-simplex in Xp−1 is automatically in Xp by construction), we have z ∈ Zp,q
r = Cp,q ∩

d−1(Cp−r,q+r−1).

(ii) Let b ∈ Bp,q
r−1 = Cp,q ∩ d(Cp+(r−1),q−(r−1)+1). Then b ∈ Cp,q. Find a preimage of b in Cp+r−1,q−r+2

and write it as a linear combination of basis elements. Each such basis element is, by definition, a

(p+ q + 1)-simplex in

Xp+r−1 = f−1(Y p+r−1) ⊆ f−1(Y p+r) = Xp+r.

Therefore, b ∈ d(Cp+r,q−r+1) and hence b ∈ Bp,q
r .

(iii) Let b ∈ Bp,q
r = Cp,q ∩ d(Cp+r,q−r+1). Then b ∈ Cp,q. Find a preimage of b in Cp+r,q−r+1 and call it

a. Then

d(b) = d2(a) = 0 ∈ Cp−r,q+r−1.

Therefore, b ∈ d−1(Cp−r,q+r−1) and hence b ∈ Zp,q
r . □
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We now have everything we need to present the formula for the Leray spectral sequences. In contrast

to most spectral sequences in the literature (which only specify their E2-page), this formula specifies all

pages of the Leray spctral sequence.

Theorem 1.3.7 (The Leray Spectral Sequence) ([2, Section 2.2]) Given a simplicial map f : X →
Y , there exists a spectral sequence {E∗,∗

r }r≥0 of homological type with Er-page

Ep,q
r =

Zp,q
r

Zp−1,q+1
r−1 +Bp,q

r−1

(where + indicates subspace sum, i.e., it gives the smallest subspace containing both summand). The

differentials dr : Ep,q
r → Ep−r,q+r−1

r are given by “restrictions” of the boundary maps of the chain

complex C•(X) (i.e., sending every coset representative via the boundary map d on C•(X) to another

coset representative). We called this sequence the Leray spectral sequence.

Most spectral sequences in the literature also come with a convergence statement. Our Leray spectral

sequence also comes with a onvergence statement. In our case, the Leray spectral sequence will converge

to the total homology of the domain X of the simplicial map. Before we state this formally, here is one

more small definition about simplicial complex.

Definition 1.3.8 Given a simplicial complex X, the dimension of X, written as dimX, is the largest

integer p such that X has at least one p-simplex but has no n-simplices for any n > p.

Theorem 1.3.9 ([2, Theorem 2.7]) Let f : X → Y be a simplicial map and m = dimY . Let {E∗,∗
r }r be

the Leray spectral sequence associated to f . Then there is a canonical isomorphism of vector spaces

Hn(X) ∼=
k⊕

p=0

Ep,n−p
m+1 .

(Pictorially, we are summing along the antidiagonal y = −x.) Hence, the Leray spectral sequence con-

verges to H∗(X) =
⊕

n∈Z Hn(X).

1.4 Two Double Covers of S1

We will demonstrate the Leray sepctral sequence with two locally-identical maps. Let S1 be the unit circle

on the complex plane. By a double cover of S1, we mean a two-to-one (continuous, of course) mapping

onto S1. Let f : S1 → S1 be the double cover given by wrapping around S1 twice, or equivalently,

“doubling the travelling speed.” (That is, z 7→ z2.) Let g : S1⊔S1 → S1 be the double cover that acts as

the identity map on each copy of S1. Note that while the two maps have very distinct global structure,

their local structures are identical. More precisely, given a point z ∈ S1 (in the codomain), the pullback of

any small open arc containing z (i.e., a neighborhood of z) along f and g are homeomorphically identical

as a disjoint union of two open arcs.

Remark 1.4.1 Such a map, where the pullback of a small neighborhood is a disjoint union of open

subsets, each homeomorphic to this small neighborhood, is called a covering map. A covering map is

automatically a fibration, i.e., satisfying the homotopy lifting property. See [1, Chapter 3, 7] and

[5, Section 4.3] for a more detail treatment.

In this subsection, we will apply the Leray spectral sequence to the two maps above and see how the

computation differ.

The circle S1 has a very simple triangulation:

1 2 3 1

so that V (S1) = {1, 2, 3} and S(S1) = {1, 2, 3, 12, 23, 13}. (To simplify notation, we will omit the un-

necessary brackets and commas. For example, by 12, we mean the simplex {1, 2}. The same notation

will be used to indicate a basis element in the chain complex. This would causes no confusion since the
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number of vertices is small enough.) But since we are working with two-to-one maps, the triangulation

of the domains (of f and g) should have twice as many vertices as the codomain. Thus, we arrive at the

following simplicial approximation of f and g.

1 2 3

4 5

6

1

A B C

A

f

1 2 3 1

4 5 6 4

A B C A

g

That is, f maps 1 and 4 to A, 2 and 5 to B, and so on.

Now we first compute the Leray spectral sequence for f . Let X = dom(f) = S1 and Y = codom(f) = S1.

Then

Y 0 = {A,B,C} and Y 1 = {A,B,C,AB,BC,AC} = Y 2 = Y 3 = · · ·

so that

X0 = f−1(Y 0) = {1, 2, 3, 4, 5, 6}, X1 = f−1(Y 1) = {1, 2, 3, 4, 5, 6, 12, 23, 34, 45, 56, 16} = X2 = X3 = · · · .

Some of the useful nonempty Xp,q are listed below:

X0,0 = {0-simplices in X0} = {1, 2, 3, 4, 5, 6},

X1,−1 = {0-simplices in X1} = {1, 2, 3, 4, 5, 6},

X1,0 = {1-simplices in X1} = {12, 23, 34, 45, 56, 16}.

Now we compute the spectral sequence. Note that Ep,q
r is, by definition, a quotient of some submodules

of Cp,q (Theorem 1.3.7), so Ep,q
r is automatically 0 whenever Xp,q = ∅. This happens, of course, when

p < 0 or the simplicial complex X has no (p+ q)-simplices, so this outright eliminates many unnecessary

computations. We thus left with, for each fix p ≥ 0, Ep,−p
r and Ep,−p+1

r the only possible nonzero terms

in the spectral sequence. We now begin the computation for the E0-page:

E0,0
0 =

Z0,0
0

Z−1,1
−1 +B0,0

−1

=
C0,0 ∩ d−1(C0,−1)

C−1,1 ∩ d−1(C0,−1) + C0,0 ∩ d(C−1,2)
=

C0,0

0 + 0
= C0,0,

E0,1
0 = 0 (since X0,1 = ∅)

E1,−1
0 =

Z1,−1
0

Z0,0
−1 +B1,−1

−1

=
C1,−1 ∩ d−1(C1,−2)

C0,0 ∩ d−1(C1,−2) + C1,−1 ∩ d(C0,1)
=

C1,−1

C0,0 + 0
= 0,

E1,0
0 =

Z1,0
0

Z0,1
−1 +B1,0

−1

=
C1,0 ∩ d−1(C1,−1)

C0,1 ∩ d−1(C1,−1) + C1,0 ∩ d(C0,2)
=

C1,0

0 + 0
= C1,0,
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and in general, for any p ≥ 1, we have Cp,−p = Cp−1,−(p−1), and so

Ep,−p
0 =

Zp,−p
0

Zp−1,−p+1
−1 +Bp,−p

−1

=
Cp,−p ∩ d−1(Cp,−p−1)

Cp−1,−p+1 ∩ d−1(Cp,−p−1) + Cp,−p ∩ d(Cp−1,−p+2)

=
Cp,−p

Cp−1,−p+1 + some unimportant junk

= 0.

(By unimportant junk, we mean they are useless for the computation, as the first summand already

contains the entire vector space in the numerator.) Similarly,

Ep,−p+1
0 =

Zp,−p+1
0

Zp−1,−p+2
−1 +Bp,−p+1

−1

=
Cp,−p+1 ∩ d−1(Cp,−p)

Cp−1,−p+2 ∩ d−1(Cp,−p) + Cp,−p+1 ∩ d(Cp−1,−p+3)

=
Cp,−p+1

Cp−1,−p+2 + some unimportant junk

= 0.

Hence, the E0-page looks like

0 0 0

C0,0 C1,0 0

0 0 0

y

d d d

d d d
x

.

Instead of using the formula to compute the E1-page, we will do this by definition (to better demonstrate

how a spectral sequence works). By Definition 1.2.2, the terms in the E1-page is given by taking homology

of the E0-page, so the E1-page looks like

0 0 0

C0,0 C1,0 0

0 0 0

y

d d

d d

d d

x

.

Finally, we compute the E2-page:

E1,0
2 = ker(d : C1,0 → C0,0) = span{12 + 23 + 34 + 45 + 56− 16},

which has dimension 1, and

E0,0
2 = C0,0/ im(d : C1,0 → C0,0),

which has dimension 6− (6− 1) = 1 by the rank-nullity theorem. Our spectral sequence stabilizes here

(i.e., E0,0
2 = E0,0

∞ and E1,0
2 = E1,0

∞ ), as every spot on the E2-page and forward will look like the diagram



1.4 Two Double Covers of S1 13

in Definition 1.2.5. By Theorem 1.3.9, we have

dimH0(S
1) = dimH0(X) = dimE0,0

2 = 1,

dimH1(S
1) = dimH1(X) = dimE1,0

2 = 1,

dimHn(S
1) = dimHn(X) = 0 (n > 1).

It is not hard to compute directly (using Definition 1.1.11) that the circle S1 has 0th and 1st homology

C (and the trivial vector space for any higher homology). This verifies our calculation.

Next up, we consider the map g : S1 ⊔ S1 → S1. Some of the calculation will be identical to the one

above, but for ease of readability, we will include them here as well. Let X = dom(g) and Y = codom(g).

Then

X0 = f−1(Y 0) = {1, 2, 3, 4, 5, 6}, X1 = f−1(Y 1) = {1, 2, 3, 4, 5, 6, 12, 23, 31, 45, 56, 46} = X2 = X3 = · · · .

Some of the useful nonempty Xp,q are listed below:

X0,0 = {0-simplices in X0} = {1, 2, 3, 4, 5, 6},

X1,−1 = {0-simplices in X1} = {1, 2, 3, 4, 5, 6},

X1,0 = {1-simplices in X1} = {12, 23, 13, 45, 56, 46}.

Now we compute the spectral sequence. The E0-page once again has three possibly nonzero terms:

E0,0
0 =

Z0,0
0

Z−1,1
−1 +B0,0

−1

=
C0,0 ∩ d−1(C0,−1)

C−1,1 ∩ d−1(C0,−1) + C0,0 ∩ d(C−1,2)
=

C0,0

0 + 0
= C0,0,

E0,1
0 = 0 (since X0,1 = ∅)

E1,−1
0 =

Z1,−1
0

Z0,0
−1 +B1,−1

−1

=
C1,−1 ∩ d−1(C1,−2)

C0,0 ∩ d−1(C1,−2) + C1,−1 ∩ d(C0,1)
=

C1,−1

C0,0 + 0
= 0,

E1,0
0 =

Z1,0
0

Z0,1
−1 +B1,0

−1

=
C1,0 ∩ d−1(C1,−1)

C0,1 ∩ d−1(C1,−1) + C1,0 ∩ d(C0,2)
=

C1,0

0 + 0
= C1,0,

and in general, for any p ≥ 1, we have Cp,−p = Cp−1,−(p−1), and so

Ep,−p
0 =

Zp,−p
0

Zp−1,−p+1
−1 +Bp,−p

−1

=
Cp,−p ∩ d−1(Cp,−p−1)

Cp−1,−p+1 ∩ d−1(Cp,−p−1) + Cp,−p ∩ d(Cp−1,−p+2)

=
Cp,−p

Cp−1,−p+1 + some unimportant junk

= 0,

and similarly,

Ep,−p+1
0 =

Zp,−p+1
0

Zp−1,−p+2
−1 +Bp,−p+1

−1

=
Cp,−p+1 ∩ d−1(Cp,−p)

Cp−1,−p+2 ∩ d−1(Cp,−p) + Cp,−p+1 ∩ d(Cp−1,−p+3)

=
Cp,−p+1

Cp−1,−p+2 + some unimportant junk

= 0.
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Hence, the E0-page looks like

0 0 0

C0,0 C1,0 0

0 0 0

y

d d d

d d d
x

.

By definition, the terms in the E1-page is given by taking homology of the E0-page, so the E1-page looks

like

0 0 0

C0,0 C1,0 0

0 0 0

y

d d

d d

d d

x

.

And here is where things get a bit different. We compute the E2-page:

E1,0
2 = ker(d : C1,0 → C0,0) = span{12 + 23− 13, 45 + 56− 46},

which has dimension 2, and

E0,0
2 = C0,0/ im(d : C1,0 → C0,0),

which has dimension 6− (6− 2) = 2 by the rank-nullity theorem. Our spectral sequence stabilizes here.

By Theorem 1.3.9, we have

dim(H0(S
1 ⊔ S1)) = dim(H0(X)) = dim(E0,0

2 ) = 2,

dim(H1(S
1 ⊔ S1)) = dim(H1(X)) = dim(E1,0

2 ) = 2,

dim(Hn(S
1 ⊔ S1)) = dim(Hn(X)) = 0 (n > 1).

It is a general fact that if X and Y are spaces (or simplicial complexes), then

Hn(X ⊔ Y ) ∼= Hn(X)⊕Hn(Y )

This verifies our calculation.

1.5 A More Complicated Example: S1 × S1 → S1

In this subsection, we will demonstrate the Leray spectral sequence with a more complicated example.

The one we pick here is the projection map f : S1 × S1 → S1 from the torus to the circle. We begin by

providing a simplicial approximation of f .
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1

2

3

4 5

6
7

8
9

2

3

4 5

1

1 1

f

A B C A

As usual, let X = dom(f) and Y = codom(f). Then

Y 0 = {A,B,C}, Y 1 = {A,B,C,AB,BC,AC}

and so

X0 = f−1(Y 0) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 23, 13, 46, 68, 48, 57, 79, 59},

X1 = f−1(Y 1) =


1, 2, 3, 4, 5, 6, 7, 8, 9

12, 13, 14, 15, 17, 18, 23, 24, 26, 27, 28, 35, 37, 38, 39, 45, 46, 47, 48, 57, 58, 59, 67, 68, 78, 79, 89,

124, 246, 268, 238, 138, 148, 457, 467, 678, 789, 589, 458, 157, 127, 239, 379, 359, 135

 .

Some of the nonempty Xp,q are listed below:

X0,0 = {0-simplices in X0} = {1, 2, 3, 4, 5, 6, 7, 8, 9},

X0,1 = {1-simplices in X0} = {12, 23, 13, 46, 68, 48, 57, 79, 59},

X1,−1 = {0-simplices in X1} = {1, 2, 3, 4, 5, 6, 7, 8, 9},

X1,0 = {1-simplices in X1} =

{
12, 13, 14, 15, 17, 18, 23, 24, 26, 27, 28, 35, 37, 38, 39,

45, 46, 47, 48, 57, 58, 59, 67, 68, 78, 79, 89

}
,

X1,1 = {2-simplices in X1} =


124, 246, 268, 238, 138, 148,

457, 467, 678, 789, 589, 458,

157, 127, 237, 379, 359, 135

 ,

X2,0 = {2-simplices in X2} =


124, 246, 268, 238, 138, 148,

457, 467, 678, 789, 589, 458,

157, 127, 237, 379, 359, 135

 .

Let’s compute the E0-page:

E0,0
0 =

Z0,0
0

Z−1,1
−1 +B0,0

−1

=
C0,0 ∩ d−1(C0,−1)

C−1,1 ∩ d−1(C0,−1) + C0,0 ∩ d(C−1,2)
=

C0,0

0 + 0
= C0,0,
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E0,1
0 =

Z0,1
0

Z−1,2
−1 +B0,1

−1

=
C0,1 ∩ d−1(C0,0)

C−1,2 ∩ d−1(C0,0) + C0,1 ∩ d(C−1,3)
=

C0,1

0 + 0
= C0,1,

E1,−1
0 =

Z1,−1
0

Z0,0
−1 +B1,−1

−1

=
C1,−1 ∩ d−1(C1,−2)

C0,0 ∩ d−1(C1,−2) + C1,−1 ∩ d(C0,1)
=

C1,−1

C0,0 + 0
= 0 (since X1,−1 = X0,0),

E1,0
0 =

Z1,0
0

Z0,1
−1 +B1,0

−1

=
C1,0 ∩ d−1(C1,−1)

C0,1 ∩ d−1(C1,−1) + C1,0 ∩ d(C0,2)
=

C1,0

C0,1 + 0
= C1,0/C0,1,

E1,1
0 =

Z1,1
0

Z0,2
−1 +B1,1

−1

=
C1,1 ∩ d−1(C1,0)

C0,2 ∩ d−1(C1,0) + C1,1 ∩ d(C0,3)
=

C1,1

0 + 0
= C1,1,

E2,0
0 =

Z2,0
0

Z1,1
−1 +B2,0

−1

=
C2,0 ∩ d−1(C2,−1)

C1,1 ∩ d−1(C2,−1) + C2,0 ∩ d(C1,2)
=

C2,0

C1,1 + 0
= 0 (since X2,0 = X1,1).

The reader should convince themselves that the remaining terms on the E0-page are all 0. Thus, the

E0-page looks like

0 0 0

C0,1 C1,1 0

C0,0 C1,0/C0,1 0

0 0 0

y

d d d

d d d

d d d
x

,

where in the middle column, the map d : C1,1 → C1,0/C0,1 is the composition

C1,1
d−→ C1,0

quotient−−−−−→ C1,0/C0,1.

Now we compute the E1-page by taking homology. We will do it column by column.

E0,1
1 = ker(d : C0,1 → C0,0) = span{12 + 23− 13, 46 + 68− 48, 57 + 79− 59},

E0,0
1 = C0,0/ im(d : C0,1 → C0,0) = C0,0/ span{1− 2, 2− 3, 4− 6, 6− 8, 5− 7, 7− 9},

E1,1
1 = ker(d : C1,1 → C1,0/C0,1)

= ker(d : C1,1 → C1,0) + C1,1 ∩ d−1(C0,1)

= span


124− 246− 268 + 238− 138 + 148

−457 + 467− 678 + 789− 589 + 458

+157− 127− 237 + 379− 359 + 135

+ span


124− 246− 268 + 238− 138 + 148,

457− 467 + 678− 789 + 589− 458,

157− 127− 237 + 379− 359 + 135


= span


124− 246− 268 + 238− 138 + 148,

457− 467 + 678− 789 + 589− 458,

157− 127− 237 + 379− 359 + 135

 ,
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and the most complicated term in E1-page:

E1,0
1 =

C1,0/C0,1

im(d : C1,1 → C1,0/C0,1)

=
C1,0/C0,1

(im(d : C1,1 → C1,0) + C0,1)/C0,1

=
C1,0

im(d : C1,1 → C1,0) + C0,1
(3rd isomorphism theorem)

= C1,0

/
span



12, 23, 13, 46, 68, 48, 57, 79, 59,

24− 14 + 12, 46− 26 + 24, 68− 28 + 26,

38− 28 + 23, 38− 18 + 13, 48− 18 + 14,

57− 47 + 45, 67− 47 + 46, 78− 68 + 67,

89− 79 + 78, 89− 59 + 58, 59− 48 + 45,

57− 17 + 15, 27− 17 + 12, 37− 27 + 23,

79− 39 + 37, 59− 39 + 35, 35− 15 + 13


= C1,0

/
span


12, 23, 13, 46, 68, 48, 57, 79, 59,

24− 14,−26 + 24,−28 + 26, 38− 28, 38− 18,−18 + 14,

−47 + 45, 67− 47, 78 + 67, 89 + 78, 89 + 58,−48 + 45,

−17 + 15, 27− 17, 37− 27,−39 + 37,−39 + 35, 35− 15

 .

Note that the six elements in each of the last three row in that giant set above are linearly dependent.

(The linear combinations needed to prove this are not hard to obtain by hand; the coefficients are all

±1.) Thus,

E1,0
1 = C1,0

/
span


12, 23, 13, 46, 68, 48, 57, 79, 59,

24− 14,−26 + 24,−28 + 26, 38− 28, 38− 18,

−47 + 45, 67− 47, 78 + 67, 89 + 78, 89 + 58,

−17 + 15, 27− 17, 37− 27,−39 + 37,−39 + 35

 .

The dimension of each term is

dimE0,1
1 = 3,

dimE0,0
1 = 9− 6 = 3,

dimE1,1
1 = 3,

dimE1,0
1 = 27− 24 = 3.

The E1-page looks like

0 0 0

E0,1
1 E1,1

1 0

E0,0
1 E1,0

1 0

0 0 0

y

d d

d d

d d

d d

x

.

Now we compute half of the E2-page. Since all we need for the homology is the dimension of each term

in the page, there is no need to compute the entire page, and we can simply invoke the rank-nullity

theorem. The E1,1
2 term is not hard:

E1,1
2 = ker(d : E1,1

1 → E0,1
1 ) = span


(124− 246− 268 + 238− 138 + 148)

−(457− 467 + 678− 789 + 589− 458)

+(157− 127− 237 + 379− 359 + 135)

 .
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To compute E1,0
2 , we shall first fix a convenient basis of E1,0

1 :

E1,0
1 = C1,0

/
span


12, 23, 13, 46, 68, 48, 57, 79, 59,

24− 14,−26 + 24,−28 + 26, 38− 28, 38− 18,

−47 + 45, 67− 47, 78 + 67, 89 + 78, 89 + 58,

−17 + 15, 27− 17, 37− 27,−39 + 37,−39 + 35


= span {14, 47, 17} .

(Here 14 really means the equivalence class of 14, but this technicality plays no role in the computation,

so we shall simply ignore that.) Then

E1,0
2 = ker(d : E1,0

1 → E0,0
1 ) = span{14 + 47− 17}.

Hence,

dimE1,1
2 = dimE1,0

2 = 1.

Using the rank-nullity theorem, we conclude that

dimE0,1
2 = dimE0,0

2 = 3− 2 = 1.

By Theorem 1.3.9,

dimH0(S
1 × S1) = 1,

dimH1(S
1 × S1) = 1 + 1 = 2,

dimH2(S
1 × S1) = 1.

The homology of the n-torus (S1)×n in general is

Hr((S
1)×n) = C(

n
r)

Put n = 2, this verifies our lengthy computation.

1.6 The Hopf fibration and Its Minimal Triangulation

The Hopf fibration is a certain interesting surjective map S3 → S2 which exhibit some nontrivial be-

haviors. For example, the fiber of every point of S2 is just a circle S1. That is, we have a fiber bundle

S1 ↪→ S3 → S2. Thus, S3 can be think of as a family of circles parametrized by the sphere. However, S3

and S2×S1 are very distinctive as manifolds. Intuitively, the Hopf fibration has a twists (in 4 dimension)

that we can’t visualize directly. This twisting is analogous to how a Möbius stripe M is a fiber bundle

of S1 with fiber I = [0, 1] (i.e., I ↪→ M → S1) but is globally distinctive from S1 × I, i.e., a cylinder.

This subsection is divided into three parts. In the first part, for completeness reason only, we will define

the Hopf fibration. While the map is often written in terms of quaternions, there is a surprisingly simple

way to do it using matrix Lie groups. The second part will be about the minimal triangulation of the

Hopf fibration given by [3]. We will also explain how to this triangulation allows us to visualize the twist

of the Hopf fibration. The last part will be an open-ended discussion on the Leray spectral sequence of

the Hopf fibration.

Definition 1.6.1 Define (or recall, if you wish) the matrix Lie groups

SU(2) = {A ∈ M2(C) : A∗A = I,det(A) = 1}

(the 2× 2 special unitary group) where ∗ indicates conjugate transpose, and

U(1) = {α ∈ C : αα = 1}

(the 1 × 1 unitary group). To make them into Lie groups, note that each of them carries a manifold

structure as a subspace of C4 (with the standard topology).
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Lemma 1.6.2 We have U(1) ∼= S1 and SU(2) ∼= S3 as manifolds.

Proof The first one is obvious, so we only prove the second one. Recall the usual Hermitian form on C2

⟨−,−⟩ : C2 × C2 → C
((x1, x2), (y1, y2)) 7→ x1y1 + x2y2

and recall that a matrix A is unitary if and only if its columns are orthonormal with respect to ⟨−,−⟩
(or equivalently, A preserves this Hermitian form). Thus, we have

SU(2) = {A ∈ M2(C) : A∗A = I, det(A) = 1}

=

{[
α x

β y

]
∈ M2(C) : αα+ ββ = 1, xx+ yy = 1, αx+ βy = 0, αy − βx = 1

}
From the third equation, we have x = −kβ and y = kα for some k. Plug this into the last equation, we

obtain kαα+ kββ = 1. Thus, k = 1 by the first equation. Hence,

SU(2) =

{[
α −β

β α

]
∈ M2(C) : |α|2 + |β|2 = 1

}
=

{[
a+ bi −c+ di

c+ di a− bi

]
: a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1

}
∼= S3

as desired. □

Note that SU(2) contains a copy of U(1) via the diagonal matrices{[
α 0

0 α

]
: αα = 1

}
With an abuse of notation, we will write U(1) for this particular subgroup as well. It also happens to be

a maximal abelian connected compact subgroup (i.e., maximal torus) of SU(2).

Before we can define the Hopf fibration, we will need one more identification. We will not introduce the

notion of spin groups and so we will not provide a proof to this. For a proof, see [6].

Fact 1.6.3 SU(2)/U(1) ∼= S2 as manifolds.

Definition 1.6.4 The Hopf fibration is the canonical quotient map

η : S3 ∼= SU(2) → SU(2)/U(1) ∼= S2

The fiber of each point in SU(2)/U(1) is just a coset and hence is homeomorphic to U(1) ∼= S1 as a

manifold.

Fact 1.6.5 η : S3 → S2 is a fiber bundle with fiber S1, i.e., locally isomorphic to the trivial fiber bundle

over small neighborhoods.

Some reader might like a more explicit version of the Hopf fibration in terms of coordinates, so here is

one.

Definition 1.6.6 The Hopf fibration is the map

η : S3 → S2

(a, b, c, d) 7→ (2ab+ 2cd, 2ad− 2bc, a2 − b2 + c2 − d2)

However, with this definition, it is not immediate that this map is surjective, let alone a fiber bundle

with fiber S1.

Now we give a triangulation of this map due to [3]. We will elaborate the triangulation in detail and

provide the entire list of simplices. Since this triangulation is much larger than what we have seen before,

we will use Euler characteristics as a (probabilistic) indicator that we get everything correctly.
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Definition 1.6.7 Given a simplicial complex X, let X(p) = {all p-simplices of X}. The number

χ(X) =
∑
p≥0

(−1)p|X(p)|

is called the Euler characteristics of X.

Fact 1.6.8 Let X be a simplicial complex. Then

(i) χ(X) = χ(|X|), where χ(|X|) is the Euler characteristic as a CW-complex;

(ii) χ(X) =
∑

p≥0(−1)p dimC Hp(X);

(iii) χ(S1) = 0, χ(S2) = 2, and χ(S3) = 0.

We now begin describing the triangulation in detail. Note that we will not justify why this is indeed a

simplicial approximation of the Hopf map (as it is beyond the scope of this paper). The sphere S2 can

be triangulated into a tetrahedron ABCD.

A

B

C

D

(such that all the triangles ABC, ABD, ACD, BCD are 2-simplices but the tetrahedron ABCD itself

is not a 3-simplex). We shall occasionally say that ABC is the southern part of S2 while referring the

rest as the northern part. Then we can triangulate S3 by first triangulating η−1(southern part), then

triangulating η−1(northern part). Then we glue them together “along the boundary”. The triangle ABC

is nothing but a disk D2, and it turns out the (restriction of the) Hopf map is a trivial fiber bundle over

this disk, so η−1(ABC) is the same thing as D2 × S1, i.e., a solid torus. Similarly, η−1(northern part) is

also a solid torus.

We first describe the triangulation of η−1(ABC), which is encoded into the following diagram
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A0

A1

A2

A0

B0

B1

B2

B0

C0

C1

C2

C0

A0

A1

A2

A0

A B C A

A0

A1

A2

A0

B0

B1

B2

B0

C0

C1

C2

C0

A

B

C

η η

In this diagram, we have a solid cylinder on the right (which becomes our solid torus upon identifying

the top and the bottom), but we intentionally omit the back side to ensure a readable diagram. Thus,

it is what you will see if you stand in front of the solid cylinder. The diagram on the left is what you

get by cutting the sidewall of the cylinder along the verticl line A0A1A2A0 and flatten it out, and so the

rightmost column (bounded by the C’s and the A’s) gives the back side of the cylinder. The cylinder has

three “levels”, which each there are three tetrahedrons (3-simplices). For example, the toppest level has

three tetrahedrons A0B0C0C2, A0A2B0C0, and A2B0B2C2. From this diagram, we arrive the following

lists of simplices. Here we use the most canonical ordering A0 < A1 < A2 < B0 < B1 < B2 < C0 < C1 <

C2 on the vertices when writing each simplex, and simplices are listed in the corresponding lexicographical

order.

0-simplices : {A0, A1, A2, B0, B1, B2, C0, C1, C2}

1-simplices :


A0A1, A0A2, A0B0, A0B1, A0C0, A0C1, A0C2, A1A2, A1B1, A1C1,

A2B0, A2B1, A2B2, A2C1, A2C2, B0B1, B0B2, B0C0, B0C1, B0C2,

B1B2, B1C1, B1C2, B2C2, C0C1, C0C2, C1C2



2-simplices :


A0A1B1, A0A1C1, A0A2B0, A0A2C2, A0B0B1, A0B0C0,

A0B0C1, A0B0C2, A0B1C1, A0C0C1, A0C0C2, A1A2B1,

A1A2C1, A1B1C1, A2B0B2, A2B0C2, A2B1B2, A2B1C1,

A2B1C2, A2B2C2, A2C1C2, B0B1C1, B0B2C2, B0C0C1,

B0C0C2, B1B2C2, B1C1C2



3-simplices :


A0A1B1C1, A0A2B0C2, A0B0B1C1,

A0B0C0C1, A0B0C0C2, A1A2B1C1,

A2B0B2C2, A2B1B2C2, A2B1C1C2


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The Euler characteristic gives 9 − 27 + 27 − 9 = 0. To see why this is what we are supposed to get, we

will use the following fact:

Fact 1.6.9 If f : X → Y is a homotopy equivalence of topological spaces, then the induced map

Hn(f) : Hn(X) → Hn(Y )

on (singular) homology is an isomorphism.

Since a solid torus D2×S1 is homotopy equivalent to S1 (by just contracting D2 to its center), it has the

same homology as S1, so by (ii) and (iii) in Fact 1.6.8, we have χ(D2 × S1) = χ(S1) = 0, as expected.

Next we triangulate η−1(northern part). The triangulation of this solid torus, however, is not that

straightforward compared to the previous one. The main idea here is to “upgrade” a triangulation

of a hollow torus (i.e., S×S1) to a triangulation of a solid torus. This upgrade is done by a process called

coning over a vertex. More precisely:

Definition 1.6.10 Given a simplicial complex X and a extra vertex v, we can form a new simplicial

complex Y with V (Y ) = V (X) ⊔ {v} and whose simplicies consist of all subsets of V (Y ) of the form

σ ∈ S(X), or σ ⊔ {v} with σ ∈ S(X) ⊔ {∅}. We call this process coning over v.

In other word, coning over a new vertex v gives a larger simplicial complex whose new simplices are

given by adding v to each of the simplex in the original simplicial complex. Note that in the definition,

we have σ ∈ S(X) ⊔ {∅} to simply ensure that {v} is also a simplex, in order to satisfy the axioms in

Definition 1.1.3. (Thus, the addition of the empty set is a mere technicality that the reader should not

be bothered to much with.)

Example 1.6.11 Consider the triangulation of S1 with simplicies {1, 2, 3, 12, 23, 13}. Let 4 be our new

vertex. Then coning S1 over 4 gives the simplicial complex {1, 2, 3, 12, 23, 13, 4, 14, 24, 34, 124, 234, 134}

1

2

3

1

2

3

4

coning

This gives us a disk D2 (not a sphere S2, as the triangle 123 is not a simplex). Intuitively, you can squish

the top vertex onto the plane, so it is a disk. More generally, and pictorially, when coning over a vertex,

you draw an edge from the new vertex to all other original vertices and “solidifying” some new faces

(e.g., 12 gives a new face 124). Also, note that when coning over a new vertex, the dimension jumps up

by 1, so you should first, pictorially, embed your complex to a higher dimension.

Remark 1.6.12 (Coning and geometric realization) It is not a surprise that the cone of a simpli-

cial complex is related to the cone of a topological space. We now state this more precisely. Let X be a

topological space. The (unreduced) cone on X is the topological space

CX = X × [0, 1]/X × {1}.

(For those who are interested: The reduced cone is only defined when X has a basepoint ∗; it further
identifies points on the line {∗}× [0, 1] to make the resulting space having a natural basepoint.) Now let

Y be a simplicial complex. Suppose you cone Y over a new vertex and write CY for this new simplicial

complex. Then we have

|CY | ∼= C|Y |

as topological spaces (or CW-complexes, if one wishes).
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First, we begin by giving a triangulation of a torus S1 × S1. This triangulation is slightly different than

the one given in Section 1.5. The vertices will be labelled in such a way that the twisting of the Hopf

fibration is evident. For example, as we move from the A’s column to the B’s column, we (sort of)

translate the labelling to the right, roll them down by 1 (similar to a conveyor belt, if that makes sense),

and change the letter from A to B, so that A0A2A1 becomes B1B0B2. Thus, when we eventually glue

this to the previous solid torus along the torus boundary, we have a twist!

A0

A1

A2

A0

B1

B2

B0

B1

C2

C0

C1

C2

A0

A1

A2

A0

A B C A

A0

A1

A2

B1

B2

B0

C2

C0

C1

A2

A0

B0

B1 C1

C2

A

B

C

D

η η

A few things to note in this diagram:

(i) The reason for splitting the (hollow) torus on the right into two pieces will be clear very soon.

(ii) The vertex D does not have any fiber just yet. Once we finish our upgrade, it will have fiber S1.

(iii) Only the triangles on the side walls are counted as 2-simplices and there are no 3-simplices. (In

particular, the triangles A0B1C2 and A2B0C1 are not 2-simplices yet. They are both just 3 pieces

of 1-simplices.)

(iv) At the bottom-right, every triangle except ABC is part of the complex. Remember, this is the

northern part of our sphere S2.

Now we upgrade this to a triangulation of a solid torus. We begin by “filling” the two hollow triangles

mentioned in (iii) above (i.e., capping the cylinders). This is easily done by coning them with, respectively,

new internal vertices D0 and D1:
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A0

A1

A2

B1

B2

B0

C2

C0

C1

A2

A0

B0

B1 C1

C2

D0

D1

To finish off the upgrade, we cone the upper (enclosed) cylinder over D1 and cone the lower (enclosed)

cylinder over another new vertex D2 sit inside the hollow bit. Thus pictorially, we have something that

looks like

D0 D1 D1 D2 D0

(where disks with the same color are glued together to get the torus). Now note that the fiber of vertex

D is indeed D0D1D2D0, i.e., a circle. We then arrived at the following list of simplices.

0-simplices : {A0, A1, A2, B0, B1, B2, C0, C1, C2, D0, D1, D2}

1-simplices :


A0A1, A2A2, A0B0, A0B1, A0C0, A0C1, A0C2, A0D0, A0D1, A0D2,

A1A2, A1B1, A1C1, A1D2, A2B0, A2B1, A2B2, A2C1, A2C2, A2D1, A2D2,

B0B1, B0B2, B0C0, B0C1, B0D1, B0D2, B1B2, B1C1, B1C2, B1D0, B1D1, B1D2,

B2C2, B2D2, C0C1, C0C2, C0D2, C1C2, C1D1, C1D2, C2D0, C2D1, C2D2, D0D1, D0D2, D1D2



2-simplices :



A0A1B1, A0A1C1, A0A1D2, A0A2B0, A0A2C2, A0A2D1,

A0B0B1, A0B0D1, A0B1D1, A0C0C1, A0C0C2, A0C0D2,

A0C1D2, A0C2D0, A0C2D1, A0C2D2, A0D0D1, A0D0D2,

A1A2B1, A1A2C1, A1A2D2, A1B1D2, A1C1D2, A2B0B2,

A2B0D1, A2B0D2, A2B1B2, A2B1D2, A2B2D2, A2C1C2,

A2C1D1, A2C1D2, A2C2D1, A2D1D2, B0B1C1, B0B1D1,

B0B2C2, B0B2D2, B0C0C1, B0C0C2, B0C0D2, B0C1D1,

B0C1D2, B0D1D2, B1B2C2, B1B2D2, B1C1C2, B1C1D1,

B1C2D0, B1C2D2, B1D0D2, B2C2D2, C0C1D2, C0C2D2,

C1C2D1, C1D1D2, C2D0D1, C2D0D2


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3-simplices :



A0A1B1D2, A0A1C1D2, A0A2B0D1, A0A2C2D1,

A0B0B1D1, A0B1D0D1, A0C0C1D2, A0C0C2D2,

A0C2D0D1, A1A2B1D2, A1A2C1D2, A2B0B2D2,

A2B0D1D2, A2B1B2D2, A2C1C2D1, A2C1D1D2,

B0B1C1D1, B0B2C2D2, B0C0C1D2, B0C0C2D2,

B1B2C2D2, B1C1C2D1, B1C2D0D1,


Computing the Euler characteristic gives 12−47+58−23 = 0. Then the p-simplices of the triangulation

of S3 is simply given by the union of the p-simplices of both the southern and the northern part.

We will end this subsection (and this paper) with a unsolved problem. What would happen when we

compute the spectral sequence using the Hopf fibration? This is actually a very well-known spectral

sequence. The E2-page should look like

C 0 C

C 0 C

y

d

x

.

and 0 everywhere else. We want to compute this particular nontrivial arrow d : E2,0
2 → E0,1

2 in terms of

a (1× 1) matrix. Why is it nontrivial? It is a well-known fact that

Hn(S
3) =

{
C if n = 0, 3

0 otherwise
.

Thus the two C’s in the diagram connected by d must be killed off after computing the homology, as the

sequence collapses at E3-page (yes, 1 page earlier than what Theorem 1.3.9 says). Hence, we must have

ker(d) = coker(d) = 0,

that is, d is an isomorphism. Any nonzero element in a 1-dimensional vector space is a basis, so to

describe d, it suffices to just find one such element and apply d to that element. For this, let’s return to

the formula of Ep,q
r in Theorem 1.3.7:

Ep,q
r =

Zp,q
r

Zp−1,q+1
r−1 +Bp,q

r−1

=
Cp,q ∩ d−1(Cp−r,q+r−1)

Cp−1,q+1 ∩ d−1(Cp−r,q+r−1) + Cp,q ∩ d(Cp+r−1,q−r+2)

so that we have

E2,0
2 =

C2,0 ∩ d−1(C0,1)

C1,1 ∩ d−1(C0,1) + C2,0 ∩ d(C3,0)
,

E0,1
2 =

C0,1 ∩ d−1(C−2,2)

C−1,2 ∩ d−1(C−2,2) + C0,1 ∩ d(C1,1)
.

The hurdle here is to find something nonzero in E2,0
2 .

To see where the issue is, we let Y to be the simplicial complex ABCD of S2 above and X = η−1(Y )

the simplicial complex of S3. Note that

C0,1 = spanC{1-simplices in η−1(Y 0)} = spanC{A0A1, A1A2, A0A2, · · · , D0D1, D1D2, D0D2}

(i.e., the span of all the vertical edges). Since Y 2 = Y , the space C2,0 is just the span of all 2-simplices
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in X. Thus, C2,0 ∩ d−1(C0,1) consists of linear combinations of 2-simplices such that, after applying the

boundary map d, only vertical edges remains. For example,

A0D0D1 −A0A2D1 +A2D1D2 +A1A2D2 +A0A1D2 −A0D0D2

is such an element, as applying d gives

D0D1 −A0A2 +D1D2 +A1A2 +A0A1 −D0D2.

However, any such element is automatically in

C1,1 = spanC{2-simplices in η−1(Y 1)} = spanC

{
2-simplices of X whose vertex letters

repeat twice (after dropping all subscripts)

}
,

so this element gets killed by the quotient in E2,0
2 . (In other words, we have C2,0 ∩ d−1(C0,1) ⊆ C1,1 ∩

d−1(C0,1).) Assuming the calculation above is correct, the only way for this contradiction to occur is

that the E2-page of the Leray spectral sequence does not looks like as stated above. The author was not

able to provide a detail calculation for each page due to time constraint. Such a calculation, due to the

huge number of simplices, is best done using computer software like Maple instead of by hand.
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