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Abstract
Medical imaging is an important tool for effective medical diagnosis and treatment but is very
reliant on signal processing. In recent years, volume resolution and extent of real world space has
vastly improved in position emission tomography (PET) imaging with recent developments with
whole body PET scanning. As a result, methods for compression, denoising, and more need to
be re-evaluated for accuracy and efficiency on larger and increasingly complex datasets. Wavelet
analysis is one such tool with the discrete wavelet transform enabling the data to be processed
in the transform domain, rather than directly as raw data. In this thesis, we evaluate the use
of wavelets in large 3D medical imaging data sets and discuss future uses and considerations for
wavelets in medical imaging.
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1 Introduction
In the world of medicine, non-invasive or minimally invasive methods for investigating the body have
become a gold standard for diagnosis of disease and injury. Among these methods, medical imaging
such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission
tomography (PET) have been used to understand both function and anatomical structure of the
body in living patients where invasive biopsy is harmful, far from ideal, or simply unnecessary [1,
Ch. 1]. One commonality to all medical imaging methods is the reliance on reconstruction of an
image based on the scattering and detection of some form of energy such as radiation, magnetic
fields, and more. As a consequence, appropriate processing to remove undesirable error and noise is
necessary to find an accurate set of images representing the inner workings of the human body. After
successful denoising, other questions arise such as how to find specific features within the volume,
how to safely compress the data without losing significant features, and more. One possible solution
to these questions is wavelet analysis.

Since their inception in the late 1980s [2, 3], wavelets have been used for a wide variety of
applications due to a necessity for more efficient and exact processing methods. Wavelet analysis
functions well as a highly adaptable method which can be tailored to a particular signal type and
captures both fine and coarse information to understand both little and big picture. Outside of
their adaptability, wavelets also well capture a large amount of the original signal within a smaller
set of a few values, which can be used to reconstruct the original dataset.

One of the most common uses of wavelets today is image compression as seen in the widely
used JPEG 2000 image format [4], a file format used by many modern cameras, computers, and
phones. Other uses include structural analysis searching for internal defects in structures [5, 6, 7],
power line extraction [8], protein structural analysis [9], solving partial differential equations [10],
posture analysis [11], and medical image processing [12,13,14]. Each of these different application
areas arise from a general need for analysis of complex data, a problem that can be solved via signal
processing.

1.1 Multidimensional Signal and Image Processing

In general, signal processing refers to the analysis, modification, and synthesis of signals which
contain a set of data as a function of some other variable such as time [15, Ch. 0]. Common
examples of signals that we are accustomed to include audio files and pictures, which we will discuss
as examples in this section. Audio files convey information about sound as a function of time, a 1
dimensional variable. Pictures convey information about color as a function of 2 dimensional space
with both an X and Y axis. We can find a more complex version of both of these signals when
looking at movies and films. Movies add the variable of time to a picture, conveying information
about color as a function of both space and time, then matches it with an additional output stream
of audio intended to be synchronized in time with the displayed image. As humans, we take much
of the complexity of these basic signals for granted as our brains are well adapted to handling many
streams of information simultaneously. At the same time, we have difficulty picking up on certain
pieces of information directly, giving us a need for signal processing algorithms to highlight the
desired information.
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Prior to discussing specific methods or algorithms, we need to consider some properties of the
original data. In specific, these properties are the possible range of values, sample resolution, and
error. Range refers to the range of different possible outputs for a given signal. For example, if
a picture uses 8-bit gray scale representation in an image, a specific pixel can take on 256 shades
of gray, but a color image is typically more complex with perhaps 8 bits to represent each of red,
blue, and green creating p28q3 “ 16, 777, 216 different possible color combinations. Next, resolution
refers to the number of samples within a signal given a certain unit of measurement. Digitally
stored music is often recorded at 48kHz or 48000 samples per second while a picture might have
a certain number of pixels in each dimension, such as 600 ˆ 480 for a total of 288000 pixels in
what is now considered a low resolution image. Finally, we consider error, best described as the
imperfections or inaccuracies introduced by attempting to measure a specific phenomena. Error in
an image is typically described as having a grainy appearance when described as noise, but can also
come about as an error if taking a picture while moving, incorrectly capturing the desired target.

With a good understanding of what to expect out of our signal, we can consider different ways
to analyze, modify, and synthesize a signal. To achieve this, we might filter out certain pieces of
signal that meet certain criteria. In an image we might want to find all pixels in a certain color
range, removing any values outside of this range. Alternatively, we might try something more
complex, searching for edges by looking for points of discontinuity in brightness and color usi ng
the Sobel operator [16]. The more complex our method, the more clever an algorithm must be to
efficiently compute.

1.2 3D Medical Data

Most medical imaging data takes a number of different forms, but usually we are concerned with
an intensity value at a certain position in space as measured by the imaging modality. To describe
the data of interest, we have a 3D matrix with each axis corresponding to spatial coordinates X, Y,
and Z specified by the scanner’s resolution. Each position within the matrix, referred to as a voxel
(volumetric pixel), is an intensity value representing different information depending on the imaging
modality. For PET imaging we see intensity as a measure of the radiation emitted by a radiotracer,
targeting specific molecules of interest for tracking. Thus, areas of high intensity imply a large
amount of use or activity in the targeted molecules of interest. In each case of CT, MRI, and PET,
we have a major concern of error introduced by the scanning method. For a given scan, there may
be issues due to subject movement during the scan or noise caused by radiation passing through
and scattering off materials. Due to this, denoising and removal of error is crucial. Once past
the issue of noise, we have a few different other areas of interest: segmentation and registration.
Segmentation is a form of feature extraction which attempts identify regions of interest such as
disease features or specific organ areas. On the other hand, registration refers to the alignment and
fusion of two or more different imaging modalities, such as PET and MRI. This enables a physician
or researcher to learn more about the patient from the perspective of both imaging modalities in
the context of each other. In the case of PET/MRI fusion, we gain understanding of the body’s
function via PET depending on the radiotracer used while MRI allows for clearer understanding of
the anatomical structure within the body.

The need for these methods has been well known for the past decade with various review
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articles discussing the current state of medical image processing [12, 13, 14], however, denoising,
segmentation, and registration all need to be re-evaluated for the new possibilities in imaging.
Some major improvements in these imaging modalities have seen the improvement of resolution
with less real world distance represented by each voxel and larger area of the body able to be
scanned. In particular, PET has seen significant improvement with the creation of the Explorer
total body PET scanner by Badawi and Cherry enabling the higher resolution scanning of whole
human body from head to toe [17]. This results in a much larger data size than ever before, so
efficient and effective methods are needed to compress or denoise these large data sets.

1.3 Aims

In this thesis, we discuss and evaluate a few different wavelet based techniques for manipulating
large 3D medical image data volumes, looking into both effectiveness and efficiency for artificially
constructed and real world data. First we will briefly discuss and test data compression via ap-
proximation, then continue onto two of the main wavelet based methods for denoising a dataset;
hard and soft thresholding. For both of these denoising methods, we look into a number of different
parameters which can have an effect on resulting outcomes and test denoising methods for various
levels of noise.

2 Wavelet Theory
Wavelets are building blocks, which can be used to describe, learn about, and reconstruct a signal
or set of data. To be successful as building blocks, we want them to capture a significant amount
of information while not being so specific that they can only capture a particular signal well [18].
If we have a number of different sets of building blocks, we might want to consider what is the
best choice of materials for a particular job as different signal types may be better represented
by different building blocks. This is in some ways analogous to building a car out of metal, but
a house out of wood and stucco; different building materials for different jobs. Since we want to
evaluate different methods for processing medical image data, we first should be sure to understand
our building materials and different options. In this section, we will discuss some of the basics of
wavelet theory. For a more in depth coverage of the topics, see the following books by Wickerhauser,
Daubechies, Meyer, and Mallat [18,19,20,21].

2.1 Origins in Fourier Analysis

To understand wavelet analysis, we must look at its origins and where it came from. Various
mathematicians contributed to related work in the late 1700s, but Fourier analysis first began with
Joseph Fourier in 1822 as basic theory of how to represent an arbitrary function by a series of sines
and cosines [22, Ch. 3, Sec. 2]. Utilizing Euler’s identity proved to be the correct method, so as
explained by Stein [23, Sec. 1.2], we define the Fourier integral or Fourier transform for a function
fpxq as:

f̂pξq “

ż 8

´8

fpxqe´2πixξdx (2.1)
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With the inverse transform for gpξq:

gpxq “

ż 8

´8

gpξqe2πixξdξ (2.2)

This enables us to find the desired series of sines and cosines. If fptq is a one-periodic function,
then its Fourier Series is the infinite sum:

fpxq «

8
ÿ

k“´8

cpkqe2πikx. (2.3)

Values tcpkq : k P Zu are termed the Fourier coefficients of f computed by:

cpkq “ f̂pkq
def
““

ż 1

0
fpxqe´2πikxdx (2.4)

By transforming our function or signal into a series of trigonometric functions, we can see the
different amplitudes of each frequency contributing to our function or signal. We can also perform
a simple reduction of data size or compression by choosing a certain set of amplitude coefficients
and only considering these coefficients, then when necessary we can utilize the inverse transform
to return to the original function or signal domain, and find a close approximation of our original
data. One nice property of the Fourier transform is the preservation of energy when transformed.
By Plancherel Theorem [24], if f is in L2pRq, then the corresponding f̂ in the transform domain is
in L2pRq and }f} “ }f̂}. This is relevant to testing and evaluation as it means that modification
and processing of the data in the transform domain results in a matched change in energy in the
original signal domain. Therefore if we want to evaluate the amount of change in the signal, we can
compare the energy of the original data to the processed data in the transform domain, without
having to return back to the original signal domain.

Although the Fourier Transform is a very powerful tool, it has two main drawbacks. First,
it loses any information about spatial or temporal localization of frequency, depending on the
original signal. Secondly, the Fourier Transform uses the specific building blocks of sine and cosine,
however, trigonometric functions may not be the optimal choice for all data sets. We can answer
these questions with clever selection of basis that is both localized and sufficiently generalizable to
find wavelets.

2.2 Wavelet Analysis

Instead of applying a singular transform to the entire dataset globally, suppose we split a signal into
partitions then analyze each partition. This allows us to regain some of the lost spatial resolution,
however, we greatly increase the amount of computation required by fully analyzing each partition
individually. To solve this, we can construct a more clever basis for decomposition that partitions
the dataset by means of applying a convolution. Our basis is defined by a generating function,
commonly called the mother wavelet. Let ψ P L2pRq with a few properties [21, Sec. 4.3]:

(i) ψ has a zero average,
ş8

´8
ψptqdt “ 0
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(ii) ψ is normalized, }ψ} “ 1

(iii) and ψ is centered at t “ 0.

One way to think of this graphically is that our mother wavelet must be bounded, oscillatory, and
localized such that prior to oscillation our function is at zero, then returns to zero after oscillation.
With ψ defined, we can find a family of wavelets by shifting and scaling ψ:

ψu,sptq “
1

?
s
ψ

ˆ

t´ u

s

˙

.

In a simple 1D case, u shifts the center of ψ and s shifts the width of ψ. We can then find our
transform of a signal f via inner product between our basis and f , or equivalently the convolution
of the two.

Wfpu, sq “

ż 8

´8

fptq
1

?
s
ψ

ˆ

t´ u

s

˙

dt (2.5)

In the discrete case as is needed for signal processing, we utilize techniques which came about
from a combination of the work by Meyer, Mallat, Daubechies, and more. This comes about as
a multiresolution analysis combined with a set of filters based on our generating wavelet ψ [18,
Sec. 6.1]. A single level of the 1-dimensional discrete wavelet transform (DWT) on a signal x can
be described as follows. Given a low pass filter g and a high pass filter h, we convolve our signal x
with each of g and h:

ylowrns “

8
ÿ

k“´8

xrksgr2n´ ks

yhighrns “

8
ÿ

k“´8

xrkshr2n´ ks

After finding each of ylow, yhigh, then downsample the resulting signal by a factor of 2. Our down-
sampled ylow values are terms approximation coefficients, sometimes referred to as scaling coeffi-
cients, and our downsampled yhigh values are referred to as detail coefficients. To find the next
transform level, we perform the same operation, this time using our previous level’s approximation
coefficients as our signal x. This can be repeated on a signal of dyadic length until resulting in
the maximum level transform of only one remaining approximation coefficient. Similarly, we can
perform these operations in reverse using inverse filters to reconstruct the original dataset based
on each the coefficients of each transform level.

This series of operations works well for a 1D signal, however, it is insufficient for higher dimen-
sional datasets as it does not preserve the spatial resolution or structure. To handle a 2D or 3D
dataset, we need to generalize this method to higher dimensions by applying our filter pair to both
ylow and yhigh another time for each dimension, this time reoriented to the axis being analyzed.
Consider a 2D case of an image with px, yq spatial dimensions. First we filter for high and low pass
along the X dimension, then we filter again for high and low passes in the Y dimension, for each of
our previous results. This results in four resulting coefficient sets based on low pass L and high pass
H results combining to find LL,LH,HL, and HH where our LL set remains as our approximation

6



coefficients, while the remaining three coefficient sets LH,HL,HH are our detail coefficients cor-
responding to that level. Similarly to 1D, to find a higher level transform, one would perform the
operation again on the previous level’s approximation coefficients to find the next desired level.

3 Evaluation of Techniques for 3D Volumes
Since wavelet analysis techniques pose challenges for large 3D data volumes, we can evaluate differ-
ent techniques on a variety of datasets which could reasonably represent the variety of applications
we might consider. In this section, we will first briefly introduce the data for evaluation, discuss
choice of mother wavelets, and see different techniques applied in action. Software for experimen-
tation was developed in Julia 1.8.1 and ran on a two different machines, first Windows 10 laptop
with Intel i7-11370H, 40 GB of RAM, and NVidia RTX 3070 and second Windows 11 mobile work-
station with Intel I9-12950HX, 128GB of RAM, and NVidia RTX A5500. The Wavelets.jl package
available on GitHub was used for computing the DWT of a signal and selection of wavelet types.
The code repository for reproducing any experiment is available upon request.

3.1 Data Creation and Selection for Evaluation

To properly evaluate different techniques, we need to consider some traits we can assess. Since the
goal of this thesis is focused on medical imaging where we are finding a 3D structural representation
of the body, we will restrict our possible data structures to non-periodic shapes. Some guiding
questions for underlying properties to consider include:

• Are there discontinuities within the data?

• Is the data noisy?

• How large is the set of data?

To answer these questions, we will consider both constructed and real world data, then in each
case add noise to the dataset.

3.1.1 Constructed Data

For our first constructed data set, we can consider a ball with a normal distribution of overall
density, referred to as the ‘simple ball’. As we move away from the center of the ball along a radius,
we find a decrease in intensity. One real world example of this density distribution would be the
distribution of mass within the sun, where the core of the star is most dense while the furthest
regions are least dense. Mathematically, we can define this as a multivariate normal distribution
with equal variance in each dimension, centered at a particular point in 3D space. The standard
Gaussian (or normal) distribution in 1D with terms µ and σ for mean and variance is given by the
following:

ppxq “
1

?
2πσ2

e´
px´µq2

2σ2 (3.1)

7

https://github.com/JuliaDSP/Wavelets.jl


Since we want a reasonable range of intensity values on a range from r0, 1s, we can remove the
scaling factor of 1?

2πσ2
, then by treating each dimension px, y, zq independently, we can find a

resulting distribution:

fpx, y, zq “ ppxqppyqppzq “ p2πσqp3{2qppxqppyqppzq “ e´ 1
2σ2 ppx´µ1q2`py´µ2q2`pz´µ3q2q (3.2)

For our purposes, we will work with a volume of dimensions 128 ˆ 128 ˆ 128 with data centered
at the middle of the volume and a resulting rendering can be seen in figure 3.1 (a). The white
3D axes refer to the spatial coordinates of intensity within the volume, this convention will be
maintained throughout this thesis. Additionally, note that with this distribution as the generator
of our dataset, we have no zeros positions which result in a true 0 value.

For our second constructed dataset, termed ‘split ball’ we introduce both discontinuity and zero
values, two desirable properties as this is more similar to medical data. We can create a discon-
tinuous region by “cutting” our simple Gaussian ball along a plane, then sliding each hemisphere
in an opposite direction. The choice of the slicing plane does have some significance. If we were
to slice along a plane containing any axis, our computation in that dimension would be greatly
simplified as there would be minimal discontinuity in that dimension, if at all. Similarly, we cannot
consider the 450 angle either as that is a special angle which could simplify certain computations
when utilizing trigonometric functions. Rather than attempting to slice directly along some plane,
we can first slice along a plane, then rotate our data within our volume to shift the plane into
a particular orientation. This method results in the introduction of zero values if performing the
rotation within the original matrix as data points outside of the matrix boundaries need to be ro-
tated into the volume. These values do not exist, thus the function applied by the Rotations library
introduces zero values for non-existent values depending on chosen settings. This is desirable as
real data may be processed prior to manipulation to quantize and compress for easy storage, which
changes many extraneous values outside of the scanned subject’s body to zero. One downside to
this method is that when performing DWT on this volume, the irregularities in the paired faces of
left-right, bottom-top, and front-back in the edges of the 3D cubic matrix are handled as regions of
discontinuity by Wavelets.jl. This is caused by Wavelets.jl performing a periodic convolution, such
that when reaching an edge of a volume, the convolution operation utilizes values on the opposing
face to find the resulting value of the convolution at that index. Due to this, a significant amount
of wavelet coefficient size in the DWT of the split ball can be attributed to Our resulting volume
when rendered can be seen in figure 3.1 (b).

3.1.2 Medical Data

Real world examples of medical data were provided by Dr. Simon Cherry of UCD with de-identified
data of subjects scanned on the uExplorer PET whole body scanner [17]. Three different data sets
were provided each scanned using F-18-FDG radiotracer corresponding to glucose activity within
the body. Two data sets at resolution 256 ˆ 256 ˆ 828 were provided for Subjects 1 and 2, then a
second data set for Subject 1 was provided at higher resolution of 512ˆ512ˆ1656. For all medical
datasets, each voxel was represented by a 16-bit unsigned integer prior to computation.

Due to limitations of Wavelets.jl library package, data could only be handled by DWT for
dimensions with all non-dyadic lengths or all dyadic lengths, not a combinations of both dyadic
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Figure 3.1: Rendering of Constructed Data

(a) Simple Ball (b) Split Ball

White 3D axes lines denote spatial coordinates of intensity within the data volume

Table 3.1: Signal Value Distribution in Each Dataset for Computation

Dataset Size Mean Std Dev Min Max % Equal to 0
Simple Ball 128 ˆ 128 ˆ 128 0.1985 0.1970 0.0016 1 0
Split Ball 128 ˆ 128 ˆ 128 0.1828 0.2087 0 1 29.36
Subject 1 Small 256 ˆ 256 ˆ 1024˚ 23.8201 189.1147 0 60000 89.23
Subject 2 Small 256 ˆ 256 ˆ 1024˚ 75.4223 403.6065 0 26252 73.68
Subject 1 Large 512 ˆ 512 ˆ 2048˚ 23.7376 188.1734 0 59999 88.7

˚ denotes volumes padded with zeros so as to function within Wavelets.jl limitations

and non-dyadic. To compensate, data was padded prior to computation to the nearest dyadic
value of 2n in each dimension as necessary. There were some interesting features of this data visible
in summary table 3.1, notably large percentage of each original volume had zero values prior to
padding. On average, zero padding to dyadic dimensions resulted in between 2-5% increase in the
percentage of the volume composed by zeros. To briefly describe each dataset, Subject 1 had a
much lower average signal around 24, with peak signals concentrated near the lower half of the
body. Subject 2 had a higher average signal than Subject 1 at around 75 with greater dispersion of
intensity across the body, significantly lower peak values at 26252 down from 60000 and more than
double Subject 1’s standard deviation. The larger, higher resolution version of Subject 1 had almost
identical features as the lower resolution version. Since Subject 1 Large had double the length in
each dimension, it was 8 times as large as the already relatively big dataset in both Subject 1
and Subject 2 making computation experiments involving high resolution for Subject 1 extremely
costly. As a result, only small resolutions will be evaluated for compression and denoising under
the assumption that Subject 1 Small at a lower resolution is sufficiently representative of the same
dataset at higher resolution. Renderings of each small medical dataset can be see in figure 3.2.
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Figure 3.2: Volume Rendering of Medical Datasets

(a) Subject 1 (b) Subject 2

3.1.3 Including Noise

Since we want to consider noisy volumes as well, we need to introduce noise into our data volumes.
This is not necessarily an accurate comparison to a real world situation as noise in PET and
other medical imaging may not have the same dispersion, pattern, or level, however, for the sake
of standardization and simplicity we will keep the noise pattern identical across all experiments.
Since different datasets have different distribution properties, we do have to consider a variety of
noise levels. Thus, for a given dataset we should use various values for variance σ depending on
the properties of the original signal, without increasing the overall energy of the dataset with an
increased mean. Finally we must keep in mind that considering a specific PET scan as a clean
noiseless dataset is somewhat of a mistake. Due to the method of data collection, PET data must
be assumed to already have noise even when handling a seemingly clean and reconstructed dataset
such as those provided by utilized in this thesis. Thus introducing noise to such a dataset is even
less ideal, however, we proceed making the assumption that the medical data provided is as close
enough to ‘truth’ as is reasonable.

Using the Julia library Noise.jl [25], we can introduce additive Gaussian noise using the
add_gauss(X,var,avg) function provided by Noise.jl library with variance σ and average µ which
default to σ “ 0.1 and µ “ 0. Following the principle of scaling noise variance based on the data
distribution, we will use the variances σ “ 0.1, 0.2, 0.3 for constructed data and σ “ 0.1, 10, 50, 100
for medical data. Although each noise level is visible in constructed data, variance values needed
to be much higher to be perceptible to the human eye when inspecting the entire volume, thus
larger values of 10, 50, 100 were chosen while still computing a baseline minimal amount of noise at
σ “ 0.1 only noticeable by computation. In both cases of medical and constructed data, inclusion
of noise results in a volume with no zero values which will be used for comparison against previously
described datasets.
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3.2 Wavelets for Evaluation

Although there are a large number of possible choices of wavelet for evaluation of medical data, in
this thesis we will evaluate a selection of those available in the Wavelets.jl library. Four of the eight
wavelets available in Wavelets.jl were chosen; Haar, Daubechies, Coiflet, and Symlet. Following the
classification method utilized by Wavelets.jl, the nomenclature for a given wavelet is basis name,
then number, where the value refers to the number of vanishing moments. Haar was selected as one
of the simplest wavelets for computation, with only one vanishing moment. Daubechies, Coiflet,
and Symlet were chosen as widely known and studied wavelet types well represented at a variety
of different vanishing moment counts and filter lengths. Wavelets excluding Haar were chosen
at 4 vanishing moments as the lowest possible count of vanishing moments common to all three
wavelet types of Daubechies, Coiflet, and Symlet within the Wavelets.jl library. Transformations
were performed on each dataset for each wavelet type to evaluate both timing tests and to see how
well the dataset was captured in the largest coefficients.

In general, Coiflet 4 was the slowest transform across all datasets while Haar was the fastest
across all datasets. These timings are largely expected as Haar uses the simplest filter to compute
the discrete wavelet transform with only two filter coefficients, while Coiflet has the longest filter
length at three times the number of vanishing moments using 12 filter coefficients. Both Daubechies
and Symlet wavelets have similar properties with respect to filter length with filter length equal
to two times the number of vanishing moments, resulting in largely similar computation times.
Interestingly, Symlet 4 was slightly slower than Daubechies 4 for datasets with larger amounts of
discontinuity, so large medical dataset, Daubechies 4 was 2.2 seconds faster than Symlet 4. These
timings can be seen in Table 3.2 which represent evaluation on a the lower power laptop, however,
the general trend remained the same when evaluating on the higher power mobile workstation
albeit faster given the stronger processor available on this machine. Lastly, these transform tim-
ings represent a maximum level transform as computed by the maximum levels condition by the
Wavelets.jl library. This did result in the final transform level being computed on set of approx-
imation coefficients of smaller dimensions than the filter lengths of Daubechies 4, Symlet 4, and
Coiflet 4, which may be undesired. The compression and denoising experiments discussed in this
thesis also used a maximum level transform.

In all datasets, very few resulting wavelet coefficients were larger than 1, while the number of
wavelet coefficients in each dataset within error precision or at 0 was associated with sparsity of the
original dataset. As described above, the simple ball had no zero values and its resulting wavelet
coefficients were largely not within error. For the remaining datasets, the flat line in each curve
represents coefficients at zero, corrected to error precision for appropriate plotting on log scale. In
the split ball and both medical datasets, Haar resulted in the largest number of zeros but also had
slightly larger coefficients on average. Coiflet 4 resulted in the largest number of wavelet coefficients
in all sparse datasets while both Daubechies 4 and Symlet 4 performed similarly. These results can
be seen in 3.3.
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Table 3.2: Wavelet Transform Timing

Haar Daubechies 4 Coiflet 4 Symlet 4
Simple Ball 47.0ms 106ms 134ms 105ms
Split Ball 41.7ms 95.9ms 123ms 96.2ms
Noisy Simple Ball 49.6ms 103ms 134ms 102ms
Noisy Split Ball 50.5ms 104ms 129ms 105ms
Subject 1 Small 2.38s 3.99s 4.89s 4.11s
Subject 2 Small 2.31s 4.10s 4.96s 4.12s
Subject 1 Large 36.2s 49.7s 56.3s 51.9s

Dataset
Transform Timings

3.3 Error and Noise Metrics

To assess accuracy and denoising, we use relative norm error and peak signal to noise ratio (PSNR).
We define relative norm error by the standard L2 norm. Given f original signal and g as the
modified signal, both in the original or transform domain, we have

err “
}f ´ g}2

}f}2
.

This allows us to see how similar the two volumes are in terms of total energy. For compression
specifically, ideally the error is as low as possible for a certain approximation with a number of
coefficients. PSNR can be defined via mean squared error, however, following Irion’s use of signal
to noise ratio [26], we will use PSNR as defined the following. Given a noisy signal g “ f `ε where
ε is error or noise and f is the known original true signal.

PSNR “ 10 log10

ˆ

maxpfq2

}g ´ f}22

˙

(3.3)

Here }g ´ f}22 is representative of the energy of the noise as removal of the true signal from the
noisy signal returns only the noise added to the volume. These metrics are representative of the
mathematical value representation of each array, so to verify that a certain marked decrease in
relative error or increase in PSNR should be evaluated visually to ensure that human vision can
observe improvements. There are a number of different metrics used to consider how well an image
would appear to a human such as Structural Similarity and more [27, 28], however, these metrics
were not utilized in this project.

3.4 Compression

Wavelets can be a useful method for data compression as the majority of the original signal is well
captured within a much smaller number of wavelet coefficients. Since compression is not typically a
huge question in medical data, we will briefly discuss the simplest of transform based compression
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Figure 3.3: Size of Wavelet Coefficients

(a) Constructed Datasets at 128 ˆ 128 ˆ 128 Resolution

(b) Medical Datasets at 256 ˆ 256 ˆ 828 padded to 256 ˆ 256 ˆ 1024 Resolution

methods, approximation via a number of wavelet coefficients. Suppose we perform a maximum
level wavelet transform on a certain dataset, resulting in N coefficients in total. As above in our
initial transform tests, we can sort these coefficients by absolute size. Then suppose we attempt a
reconstruction of our original dataset with 1% largest coefficients, so we set coefficients outside of
this range to zero and proceed with m coefficients. In figure 3.4, we can see approximation of the
original signals via each wavelet type for coefficient counts m P r1, N s evaluated for relative error.
In for constructed datasets, we see that Haar performed the worst with the highest error across
all datasets at every choice of coefficient count. While for medical datasets, Haar only performed
the worst for the majority of its non-zero coefficients, once past the threshold of 0 coefficients
as can be seen in figure 3.3, the corresponding dataset reached error precision. The remaining 4
vanishing moment wavelet types had roughly similar performance for most regions of constructed
data, but followed a similar pattern of rapidly approaching zero at a point depending on number
of zero coefficients. Coiflet 4 reached the lowest error point when evaluating for approximation
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via all non-zero coefficients in datasets with a number of zero coefficients. Specific to compression,
being able to encode the maximal amount of information in the fewest amount of coefficients is
preferred, thus although has a larger amount of error at most largest coefficient counts m, Haar has
the fewest coefficients equal to zero after initial transformation thus could be a reasonable option.
When these results are considered in combination with our timing tests in table 3.2, we see the
trade off of maximum accuracy versus speed efficiency.

Figure 3.4: Approximation via m Largest Coefficients

(a) Constructed Datasets

(b) Small Medical Datasets

3.5 Denoising

There are many different methods for wavelet based denoising of a signal, but in general we can
simplify to two categories; hard or soft thresholding. In general, both methods leverage the property
of wavelets that majority of features of a signal are well captured by a fewer large coefficients, while
very fine detail features such as those caused by noise would likely be captured in small coefficients.
Hard thresholding is a simple thresholding method which only retains values larger than a specific
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chosen threshold T , setting coefficients smaller than T to zero. These general methods can be
applied to any number of different transform methods, including Fourier coefficients, however, we
have utilized them for wavelet transform denoising following in the footsteps of past authors [29,30].
In many ways, this is identical to approximation with fewer coefficients, however, in a noisy dataset
we remove these small coefficients which mostly capture noise in an attempt to capture the ‘true’
signal. There are some short comings with this method, notably that a large number of small
coefficients may represent both fine details in the true signal and noise. We can attempt to remove
just the contribution by noise while retaining the contribution from true signal by performing soft
thresholding instead. Soft thresholding is a more careful operation which removes coefficients less
than T , but also shrinks other coefficients towards zero by the magnitude of the threshold. There
are different schemes for performing soft thresholding, but we will be using the method defined
by Irion and Saito [26] which performs soft thresholding based on approximation versus detail
coefficients. For wavelet coefficients cjl with j P r0, jmaxs corresponding to transform level and
l P r0, lmaxs denoting index within the transform level, we soft threshold coefficients by

c̃jl “

#

cjl if l “ 0

signpcjl qp|cjl | ´ T q` otherwise
.

In plain language, we retain the coefficients corresponding to the approximation coefficients at every
transform level as is, then shrink all other coefficients towards zero by T to a minimum of zero.
By retaining the approximation coefficients, we maintain and preserve data averages corresponding
to the entire transformed dataset, which should be minimally effected by noise. This improves
on conventional soft thresholding which globally shrinks all values towards zero, however, could
possibly be further improved by careful selection of transform level and/or level specific thresholding
such that a threshold t is selected for each level based on that level’s coefficients.

For either case of soft or hard thresholding, selection of appropriate threshold T is crucial with
many different methods for choice of an optimal value for T . If T is too large, we lose elements
of the original signal, while if T is too small, we eliminate too little of the noise, and each type or
method of thresholding may have certain nuances on a specific dataset. For simplicity, we choose our
threshold T from the wavelet coefficients themselves, thresholding based on m-th largest coefficient
similar to our approximation for compression.

Figures 3.5 and 3.6 display the results comparing hard and soft thresholding across each of the
four selected wavelet types for different noise variances in a given dataset. For hard thresholding,
across all datasets and levels of noise variance, we have a very large spike in increased PSNR for
large thresholds equal to some of the largest coefficient within the transformed data. This spike is
characterized by a much more sharp increase in constructed data and a more smooth peak in medical
data. Soft thresholding on the other hand, had a much more smooth curve across all datasets,
never reaching the sudden peak as is apparent in hard thresholding. In general, soft thresholding
outperformed hard thresholding for almost all thresholds tests, however, within the limited range
of high spike values at large thresholds, hard thresholding outperformed soft thresholding on both
PSNR and relative error metrics. When inspected in visual renderings, hard thresholding was
vaguely recognizable while soft thresholding resulted in a clear improvement with maintained clear
distinction between small features such as rib bones for Subject 1 and other regions for Subject 2 as
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Figure 3.5: PSNR in Denoising when T is m-th Largest Coefficient in Constructed Datasets

seen in figure 3.7. So although hard thresholding is mathematically similar to the original volume
by relative L2 norm error with low measurements of noise for a small set of thresholds, it is a poor
choice of technique due to too much distortion of the image.

Next considering the different wavelet types, we see that although Haar is our worst wavelet
choice for the constructed data in general, Haar reaches a point of greater accuracy in comparison

16



to other wavelet choices on a small range of thresholds for hard thresholding in the low variance
case. Despite this, Haar does not reach the same maximum amount of noise removed as other
wavelet choices. Specific to Haar in soft thresholding, Haar was the least sensitive to threshold
selection, with the smallest amount of variance in results across a wide variety of thresholds. This
implies that if using soft thresholding on Haar wavelet coefficients, exact threshold selection once
lower than a certain value, will result in a respectable amount of noise removal, especially when
compared to hard thresholding with Haar which is very sensitive to threshold selection. For both
hard and soft thresholding, Daubechies 4, Coiflet 4, and Symlet 4 outperformed Haar for almost all
tested thresholds across all variances and datasets. Out of these three wavelet types, performance
is almost identical, with Symlet 4 usually out performing Daubechies 4 and Coiflet 4 by a very
small margin (« ´0.000001 for relative error, « `0.02 for PSNR), with the difference between
these three wavelet types changing based on variance and dataset. Comparing datasets across by
variance level in noise, the difference between the extrema in soft and hard thresholding decreased
as variance increased. Each of these methods showed worsening results based on variance with
greater amounts of reintroduction of noise for medium to small threshold choices. Additionally,
at medium to small threshold choices, the difference in soft thresholding accuracy across different
wavelet types including Haar was greatly reduced. These results are mirrored in approximation
error which can be seen in supplemental figures S1 and S2.

When looking at the visual rendering of soft thresholding and noise, certain bodily features
unnecessary to medical evaluation of organs are more noticeable with the introduction of noise
most notably the area lower body around the hips of the subject. Although these features are not
fully removed by soft thresholding, denoising does reduce how visible these regions are.

3.6 Discussion

For every computational method, there is the question of speed versus accuracy. In this section, we
will touch upon this question. As a brief recap, our least complex wavelet type of Haar was fastest
to compute in comparison to all other choices, with Coiflet 4 as the slowest transform to compute.
According to accuracy metrics of relative error, Symlet 4 had the best performance in most com-
pression cases, beaten by Haar for a some tests in compression. For denoising, soft thresholding
outperformed hard thresholding in almost all threshold choices with Symlet 4 seemingly being the
best wavelet choice for denoising. In all denoising methods, the performance decreased as vari-
ance level in noise increased. Yet, most improvements made by more complex wavelet types were
relatively small in comparison to Haar, so can we justify using a method which requires a 1.5 to
2.5 times slower transform compute time depending on size and wavelet type. In what cases, can
Haar be sufficient enough levels of accuracy such that it suffices and a more complex method is
undesirable. Certainly, for some cases of compression, Haar appears to be a very good option, but
the answer is not as clear for denoising.

Practical use of a wavelet based denoising method requires the use of an estimator to deter-
mine what threshold value to apply via soft or hard thresholding. A number of different options
are available such as the double-elbow method by Irion and Saito [26], universal threshold value
discussed by [29], and more. If these threshold estimators or a new estimator falls within the peaks
for soft thresholding for a given wavelet choice, then the practical selection of a threshold may
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Figure 3.6: PSNR in Denoising when T is m-th Largest Coefficient in Medical Datasets

make a certain method and wavelet transform pair more desirable. As briefly touched on when
discussing specific thresholding schemes, the method tested in this experiment represented global
hard threshold and soft thresholding of all detail coefficients. Other thresholding schemes such
as Donoho’s SureShrink algorithm, which use a threshold specifically chosen for each transform
level may also be superior to the methods tested in this thesis. Finally, to fully understand these
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Figure 3.7: Rendering of Denoising via Thresholding in Subject 2

(a) Original (b) Noisy, σ “ 100

(c) Hard Threshold with Symlet 4 (d) Soft Threshold with Symlet 4

findings, we need to consider a wider range of both parameters and parameter selections. Once we
have fully considered enough parameters and computation speed is desirable, then Haar may be
a good choice for very large medical datasets. However, for many evaluations the medical world
the maximum level of accuracy is preferred. Considering this point, how can we adjust existing
methods to enable the practical use of sophisticated denoising schemes paired with more complex
wavelet filters?

In this thesis, we assume Wavelets.jl to employ the most optimal methods the Julia programming
language has to offer. If we change this assumption slightly to only assume the computation
algorithm is well optimized, we can consider the possibility of accelerating 3D wavelet transforms
by parallelization of tasks. In recent years as graphics processing units (GPUs) have improved
to become more and more powerful, GPU parallel processing has garnered increased interest as a
method for greatly accelerating computations by parallelization, separating individual computations
across thousands of GPU cores to be simultaneously processed. With GPU programming supported
by Julia via the AMDGPU.jl and CUDA.jl [31] libraries, the creation of parallel processing enabled
functions for the discrete wavelet transform and subsequent wavelet based denoising may make
the speed difference between these different wavelet types negligible, making more complex wavelet
filters preferred for wavelet based denoising techniques. Some existing solutions have come about
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to accelerate DWT transforms such as Quan’s hybrid parallelism based method via CUDA [32] and
Chen’s Slice method for the lifting based variant of DWT [33], but as of yet no method is available
in Julia. If the concern of computation time can be ameliorated, small changes in accuracy and
denoising become more viable for practical use.

4 Conclusion
In this thesis, we have investigated an initial evaluation of wavelet based techniques for compression
and denoising in large 3-D medical datasets such as whole body PET imaging. Our investigation
considered two parameters for compression, data structure and wavelet type, and four parameters
for denoising: thresholding method, wavelet type, data structure, and noise level. More complex
methods such as soft thresholding paired with more complex wavelet filters such as Symlet 4 result
in both higher accuracy measurements and improved readability upon reconstruction, however,
come at the cost of computation time in very large datasets.

For most real world cases, a slightly longer compute time is not a problem. High accuracy in
measurements and tests is crucial for assessment of patients, but at what point is a less complex
wavelet transform sufficient, satisfactory and perhaps preferred? If paired with more sophisticated
methods than used in this initial series of experiments, a simpler wavelet transform such as Haar
may prove to be acceptable. Alternatively, we may find that as is indicated in this investigation,
more complex wavelet would be preferred due to higher accuracy. To fully answer this question
in medical image denoising, a more thorough series of tests should be performed to with a wider
selection of already chosen parameters as well as additional conditions to be considered. This
would include further variation in datasets, noise pattern, wavelet type, thresholding scheme, and
threshold selection. Secondly, other metrics which evaluate a volume based on structure or human
vision would enable more careful evaluation of the resulting outcome, regardless of exact level of
noise removed. Once more aspects have been evaluated for large medical datasets, a more conclusive
answer to this question can be determined.

Denoising experiments are only one method within an overarching toolbox for image process-
ing techniques on medical volumes. Various software applications enable segmentation, feature
extraction, image registration and more which can all be performed via wavelet based methods.
The question of optimal versus satisfactory wavelet and technique for each of these algorithms for
medical data can be considered. Finally, if we want to support these techniques within Julia, a
more comprehensive and robust code library should be built to better enable researchers to further
explore these questions both in medical data specifically and in other datasets.
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Appendix - Supplementary Figures

Figure S1: Relative Error in Denoising when T is m-th Largest Coefficient in Constructed Data
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Figure S2: Relative Error in Denoising when T is m-th Largest Coefficient in Medical Datasets

25


	Introduction
	Multidimensional Signal and Image Processing
	3D Medical Data
	Aims

	Wavelet Theory
	Origins in Fourier Analysis
	Wavelet Analysis

	Evaluation of Techniques for 3D Volumes
	Data Creation and Selection for Evaluation
	Constructed Data
	Medical Data
	Including Noise

	Wavelets for Evaluation
	Error and Noise Metrics
	Compression
	Denoising
	Discussion

	Conclusion
	References
	Appendices

