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1. Introduction

We will study invariants of knots and links such as the Kauffman bracket polynomial and the Jones polyno-
mial.

In Sections 2 and 3, we recall the three Reidemeister moves, the definition and the properties of the bracket
polynomial and the Jones polynomial following [1]. In particular, the curl relation in Proposition 3.3 describes
the behavior of the bracket polynomial under the first Reidemeister move and is used frequently in this paper.

In Section 4, we compute the bracket polynomial for arbitrary T (2, n) torus links which can be obtained as
closures of two-strand braids σn

1 . In particular, we get the following result (Theorem 4.2):

Bn = ⟨T (2, n)⟩ = Bn = −An+2 +
−An−6 − (−1)nA−2−3n

1 +A−4
.

In Sections 5 and 6, we take a more abstract approach and define a vector space spanned by all crossingless
matchings on 3 strands. This space is called the Temperley-Lieb algebra. Adding a crossing on top of a cross-
ingless matching leads to a matrix which we compute in Section 6. There are two such matrices T1, T2 corre-
sponding to the generators of the braid group. We verify that the braid relation T1T2T1 = T2T1T2 holds for
such matrices.

Finally, in Theorem 6.6, we compute a matrix for the (3, 3k) torus link by computing the powers (T1T2)
3k

inductively. This allows us to prove Theorem 6.7, which gives an explicit formula for the bracket polynomial
of (3, 3k) torus link for all k ≥ 0.
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2. Background on Knots

Definition 2.1. A Reidemeister move is one of three ways to change the projection of a knot that will
change the relation between the crossings.

Definition 2.2. The first Reidemeister move allows one to put in or take out a twist in the knot.

Definition 2.3. The second Reidemeister move allows one to either add two crossings or remove two
crossings.

Definition 2.4. The third Reidemeister move allows one to slide a strand of the knot from one side of a
crossing to the other side of the crossing.

Theorem 2.5. Two diagrams correspond to the same knot or link if and only if they are related by a se-
quence of Reidemeister moves.

For more details see [1].

We will also need some facts about the braid group. The braid group on n strands has generators σ1, . . . , σn−1

and relations

(1) σiσi+1σi = σi+1σiσi+1, σiσj = σjσi (|i− j| ≥ 2).

The second Reidemeister move corresponds to the relation σiσ
−1
i = 1 and the third Reidemeister move corre-

sponds to the first equation in (1).
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3. The Bracket Polynomial

Definition 3.1. The bracket polynomial is defined by the following relations:

and

3.1. Properties.

Proposition 3.2. The Bracket polynomial does not change under the second and third Reidemeister moves.

See Section 6.1 in [1].

Proposition 3.3. The Bracket polynomial does change under the first Reidemeister move, so a Curl Rela-
tion is used. The bracket polynomials before and after adding a curl differ by a factor −A±3.

Proof. The definition of the first Reidemeister move is given by

Apply 3.1
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Thus, we obtain the Curl Relation −A±3. □

3.2. The Jones Polynomial.
How do we fix the issue with curls, and define an actual link invariant which does not change under all Reide-
meister moves? We orient the link by choosing a direction for each component.

Definition 3.4. A positive crossing (+1) is defined by

Definition 3.5. A negative crossing (-1) is defined by

Definition 3.6. The writhe of an oriented link w(L) is the difference between the number of positive and
negative crossings, or

w⟨L⟩ = (number of positive crossings) - (number of negative crossings)

Example 3.7. Orientation of the Hopf Link:

Since there are two negative crossings, we have w⟨L⟩ = −2.

Example 3.8. Orientation of the Trefoil Knot:

Since there are three positive crossings, we have w⟨L⟩ = 3.

Definition 3.9. Finally, we can define the Jones polynomial as

J(L) = (−A3)−w(L)⟨L⟩

Theorem 3.10. J(L) is a link invariant and does not change under all three Reidemeister moves
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4. Computations of Two Strands

In this section we consider the T (2, n) torus links which can be obtained as closures of two-strand braids σn
1 .

Let Bn be the bracket polynomial for T (2, n).

Lemma 4.1. The polynomials Bn satisfy the recursion

Bn = ABn−1 +A−1(−A−3)n−1

Proof. We present the following link Bn with n crossings:

We first apply the equation in Definition 3.1 to the bottom crossing, which gives us

Notice that is the original knot, but with n− 1 crossings. We call this Bn−1.

We can also note that we can apply the curl relation to . We will eventually obtain the unknot if we
continuously apply the curl relation (n− 1) times to this knot.

Thus, we have obtained the recursive formula Bn = ABn−1 +A−1(−A−3)n−1 □

Theorem 4.2. The bracket polynomial for the T (2, n) torus link is

Bn = −An+2 +
−An−6 − (−1)nA−2−3n

1 +A−4

Proof. We prove this by induction, using the previous lemma.

For the base case : n = 0, we have an unlink with two components, so B0 = −A2 −A−2.
On the other hand, we have

−A2 +
−A−6 − (−1)0A−2

1 +A−4
= −A2 − A−2(1 +A−4)

1 +A−4
= −A2 −A−2.

For the inductive step, we assume that the n− 1 case is true:

Bn−1 = −An+1 +
−An−7 − (−1)n−1 ·A−2−3(n−1)

1 +A−4
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So,

ABn−1 +A−1 · (−A−3)n−1 = ABn−1 +A−1 · (−1)n−1 ·A−3n+3

= ABn−1 + (−1)n−1 ·A−3n+2

Then we plug in Bn−1, which gives us

−An+2 +
−An−6 − (−1)n−1 ·A−2−3(n−1)+1

1 +A−4
+ (−1)n−1 ·A−3n+2

Simplifying this expression would give us

−An+2 +
−An−6 − (−1)n−1 ·A−3n+2 + (−1)n−1 ·A−3n+2 + (−1)n−1 ·A−3n+2−4

1 +A−4

= −An+2 +
−An−6 + (−1)n−1 ·A−2−3n

1 +A−4

= −An+2 +
−An−6 − (−1)n ·A−2−3n

1 +A−4
.

Thus, the induction proof is completed. □

Example 4.3. For n = 1 we get the unknot:

When we apply the curl relation, we get B1 = −A3. We can also plug in n = 1 into Theorem 4.2 and get

B1 = −A3 +
−A−5 +A−5

1 +A−4
= −A3.

Example 4.4. For n = 2 we get the Hopf link

We apply Definition 3.1 to the bottom crossing to get

First, we look at and apply 3.1 again to get

The equation we end up with is ((−A2 −A−2) ·A+ 1 ·A−1) ·A, which then simplifies to −A4

Then we apply the curl relation to , and we get
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which simplifies to −A−4. Thus, the polynomial equals

B2 = −A4 −A−4.

We can also plug n = 2 into Theorem 4.2 and get

B2 = −A4 +
−A−4 −A−8

1 +A−4
= −A4 −A−4.

Example 4.5. For n = 3 we get the trefoil knot

We can follow the same process as the previous example where we apply 3.1 to the bottom crossing. Even bet-
ter, we can use 4.1 to obtain the polynomial
Since there are three crossings, we have

B3 = AB2 +A−1(−A−3)2

We found that B2 = −A4 −A−4 in the previous example. Now,

B3 = A(−A4 −A−4) +A−1(−A−3)2

Thus, the polynomial equals B3 = −A5 −A3 +A−7.

We can also plug n = 3 into Theorem 4.2 and get

B3 = −A5 +
−A−3 +A−11

1 +A−4

= −A5 −A−3 1−A−8

1 +A−4

= −A5 −A−3(1−A−4)

= −A5 −A3 +A−7
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5. Temperley-Lieb Matrices

Let V be the 5 dimensional space spanned by the pictures in Figure 1 also known as crossingless matchings.

Figure 1.

Define T1 to be the linear operator which adds the crossing σ1 on top of a diagram in V :

and define T2 be the linear operator which adds the crossing σ2 on top:
We can use the defining relation for the bracket polynomial to write the matrix for T1 in the basis of V , see
Figure 2.

Figure 2.
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6. Computations of Three Strands

Definition 6.1. We define matrices T1 and T2 by the following equations

T1 =


A 0 0 0 0

A−1 −A−3 0 0 A−1

0 0 A 0 0
0 0 A−1 −A−3 0
0 0 0 0 A



T2 =


A 0 0 0 0
0 A 0 0 0

A−1 0 −A−3 A−1 0
0 0 0 A 0
0 A−1 0 0 −A−3


It is easy to check the following formula for the product T1T2.

Proposition 6.2. The product of T1T2 is the matrix

T1T2 =


A2 0 0 0 0
1 0 0 0 −A−4

1 0 −A−2 1 0
A−2 0 −A−4 0 0
0 1 0 0 −A−2


To every braid on 3 strands, we associate a matrix by replacing σ1 and σ2 with T1 and T2.

The following proposition shows that T1 and T2 satisfy braid relations (1), and therefore this assignment of
matrices to braids is well defined.

Proposition 6.3. T1T2T1 = T2T1T2

Proof. We compute this by matrix multiplication.

T1T2T1 =


A3 0 0 0 0
A 0 0 0 −A−3

A 0 0 −A−3 0
A−1 0 −A−3 0 0
A−1 −A−3 0 0 0



T2T1T2 =


A3 0 0 0 0
A 0 0 0 −A−3

A 0 0 −A−3 0
A−1 0 −A−3 0 0
A−1 −A−3 0 0 0


Thus, T1T2T1 = T2T1T2

□

Example 6.4. The figure eight knot is obtained as the closure of the braid σ1σ
−1
2 σ1σ

−1
2 and corresponds to

the matrix

T1T
−1
2 T1T

−1
2 =


1 0 0 0 0

2A4−1
A6

−A12+(A4−1)2

A8 0 0 A8−A4+1
A2

2A2 −A6 0 A8 −A4 −A8+A4−1
A2 0

−A8+2A4−1
A4 0 A8−A4+1

A2

−A12+(A4−1)2

A8 0

1 −A8+A4−1
A2 0 0 A8 −A4


The (3,m) torus links are obtained as the closures of the braids (σ1σ2)

m. The corresponding matrices are
(T1T2)

m.
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Example 6.5. The braid (σ1σ2)
3 is a full twist, or a 360° rotation. The corresponding matrix is

(T1T2)
3 =


A6 0 0 0 0

A8−1
A4 A−6 0 0 0

A8−1
A4 0 A−6 0 0

A4−1
A2 0 0 A−6 0

A4−1
A2 0 0 0 A−6


Theorem 6.6. For m = 3k we have

(2) (T1T2)
3k =


A6k 0 0 0 0
xk A−6k 0 0 0
xk 0 A−6k 0 0
yk 0 0 A−6k 0
yk 0 0 0 A−6k


where

xk =

(
1 +A12 +A24 +A36 + · · ·+A12(k−1)

)
(A8 − 1)

A6k−2

and

yk =

(
1 +A12 +A24 +A36 + · · ·+A12(k−1)

)
(A4 − 1)

A6k−4

Proof. We prove by induction in k. The base case k = 1 is covered by Example 6.5. To prove the inductive
step, assume that (T1T2)

3k satisfies (2). Then

(T1T2)
3(k+1) = (T1T2)

3k(T1T2)
3,

and by multiplying the matrices, we get the recursion relations

xk+1 = A6xk +A−6kA
8 − 1

A4
, yk+1 = A6yk +A−6kA

4 − 1

A2
.

It remains to prove that xk and yk are given by the above formulas.
Now, let’s prove the formula for xk.
Base case k = 1:

x1 =
(A8 − 1)

A4

For the inductive step, assume that the formula for xk is true.

xk+1 =

(
1 +A12 + · · ·+A12(k−1)

)
(A8 − 1)

A6k−2
·A6 +

(A8 − 1)

A4
·A−6k

= (A8 − 1)

((
1 +A12 + ·+A12(k−1)

)
·A6 ·A6

A6k−2 ·A6
+

1

A6k−2 ·A6

)

= (A8 − 1)

(
A12 +A24 + ·+A12k + 1

A6k−2 ·A6

)
The formula for yk is proven similarly.
Thus, the proof is completed.

□

Theorem 6.7. The bracket polynomial for the torus link T (3, 3k) is given by the equation

⟨T (3, 3k)⟩ = A6k(−A2 −A−2)2 + 2xk(−A2 −A−2) + 2yk

where xk and yk are as in Theorem 6.6.

Proof. First, we express (T1T2)e1 in the basis of V using Theorem 6.6:

(3) (T1T2)
3k · e1 = A6ke1 + xke2 + xke3 + yke4 + yke5

Then, we compute the closure of each ei for e = 1, · · · , 5 by using Rules 1 and 2



11

Now the bracket polynomial of T (3, 3k) can be obtained as follows:

⟨T (3, 3k)⟩ = ⟨(T1T2)
3k · e1⟩ = A6k⟨e1⟩+ xk⟨e2⟩+ xk⟨e3⟩+ yk⟨e4⟩+ yk⟨e5⟩

We then use the values for ⟨ei⟩ to obtain the formula given in Theorem.

□
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