
Numerical Simulations of Particle Tracks in
Detector

King Zixuan Lin

Undergraduate Thesis

in

Mathematical and Scientific Computation

Supervisor: Martin Fraas

Department of Mathematics

University of California, Davis

Spring 2023

Abstract: In Quantum Mechanics, a direct measurement on a particles position will inher-
ently collapses its wavefunction and other subsequent measurement on the particle will become
uncertain. One way to avoid such uncertainties is to make indirect measurements. In this
paper, we consider a model of a quantum particle propagating in a cloud chamber in which
the ionization of cloud chamber particles will result in an approximate indirect measurement
of the position of the particle. In particular, for every interval of time t̃ during the free evolu-
tion of the particle as described by the Schrödinger Equation and represented by the unitary
operator exp(−it(P̂ 2 + V (x))), we will be indirectly measuring the particles position which is

represented by the jump operator V̂ξ = (1/(σ
√

2π)1/2) exp(−(X − ξ)2/4σ2). Specifically in this
paper, we will be producing a visual representation of the position of the particle to simulate
the particle’s track. To better understand the particle’s track, we first consider the case where
the particle is not bound by any potential (V (x) = 0), and later the case where the particle is
bound by some potential (V (x) ≠ 0).

1

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Background: Quantum Postulates . 3

1.2.1 Postulate 1: State Space . 4
1.2.2 Postulate 2: Evolution . 4
1.2.3 Postulate 3: Quantum Measurements . 5

1.3 Aims and Expectations . 5

2 Methods 6
2.1 Process of the Model . 6
2.2 Markov Process . 8
2.3 Numerical Solution and MATLAB Implementation 9

2.3.1 Solving the Schrödinger Equation and the Implementation 9
2.3.2 Measurement Implementation . 13

3 Results 14

4 Conclusion 17

Acknowledgement 19

References 19

Appendix 20
A. Solving Schrödinger Equation Code . 20
B. Measurement Code . 20
C. Interval Shift Code . 20
D. Generation Code . 21

2

1 Introduction

1.1 Motivation

Ever since the first appearance of quantum theory in the 1920s, there have been ongoing dis-
cussion on how quantum mechanics is related to classical mechanics. Quantum mechanics is
a probability theory which leads to numerous features that seem to defy logic. However, as
of today all experiments confirm predictions of quantum mechanics. Then does that makes
classical mechanics wrong? Not necessarily. Quantum mechanics just provides a more gen-
eral description of physical phenomenons. The relationship between classical and quantum
mechanics have been studied thoroughly since the beginning of quantum theory. One possible
connection between classical mechanics and quantum mechanics is seen through the problem of
classical trajectories emerging from quantum systems. This problem was initially proposed by
Einstein and was named as a Mott problem after a theoretical work by Mott in 1929 [3]. Mott
was able to explain the α-particle tracks seen in a Wilson Cloud Chamber using second-order
stationary perturbation theory and considering the particle-environment interaction inside the
cloud chamber [1, 2].

Originally, the cloud chamber was a device that was able to physically show the particles
trajectory as it passes through the device. This is achieved through particle interaction with
the environment inside the chamber. To be more specific, supersaturated water vapor are
placed inside the sealed device and the molecules are in a state right before the liquid-gas phase
transition. Once the particle enters the cloud chamber, it interacts with the molecules inside
the device triggering the phase transition to occur. Now suppose the same set-up is kept where
supersaturated water vapor is placed inside the chamber, but instead, we place a radioactive
element in the center of the chamber. This radioactive element will go through decay emitting
an α-particle that will propagate inside the chamber. The same interaction happens and leaves
a visible trajectory of the path it took. In this paper, we want to simulate this process and study
its behavior. We consider a model outlined in “The appearance of particle tracks in detectors”
by Ballesteros, Benoist, Fraas, and Fröhlich [1].

1.2 Background: Quantum Postulates

Quantum Mechanics is truly odd in the sense that it is counter-intuitive. In light of this, it
nevertheless provides a complete description of physical systems in our world. One may think
that Classical mechanics (Newtonian mechanics) already explains physical phenomenon we see
everyday and this is true to some extent. Classical mechanics can be viewed as a limiting case
of Quantum mechanics, and what Classical mechanics fails to explain that Quantum mechanics
succeed in is the description of physical systems in the microscopic world, such as one particle
interacting with another particle. Moreover, an aspect that differentiate Classical mechanics and
Quantum mechanics is the concept of superposition, entanglement, and measurements. We will
now go over three important Quantum Postulates [4] that put these ideas into a mathematical
framework. We should note there are more than three Quantum postulates, and that there is
no universal agreement as to what the specific postulates are. We only present the postulates
that are relevant for this paper.

3

1.2.1 Postulate 1: State Space

A physical system is completely described by its wavefunction ψ(x, t) or its ket ∣ψ⟩ which
resides in a vector space known to mathematicians and physicists as the Hilbert space. Hilbert
space is a linear space with a scalar product that is complete with respect to the corresponding
distance function. We will use the Hilbert space of square integrable functions denoted by
L2(R). Additionally, wavefunctions satisfy the normalization relation

⟨ψ∣ψ⟩ = 1 (1.1)

This implies that the state vector in the vector space is a unit vector.
It is useful to consider an example. Let us consider a qubit which is a two-level system

with possible states ∣0⟩ and ∣1⟩. Quantum mechanics tells us that before a measurement has
occurred, the two-level system is in a state of superposition of all possible states

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ (1.2)

Indeed, if ∣ψ⟩ obeys (1.1) then it follows that

⟨ψ∣ψ⟩ = (α ∣0⟩ + β ∣1⟩)† ⋅ (α ∣0⟩ + β ∣1⟩) (1.3)

= (α∗ ⟨0∣ + β∗ ⟨1∣) ⋅ (α ∣0⟩ + β ∣1⟩) (1.4)

= α∗α⟨0∣0⟩ + α∗β⟨0∣1⟩ + β∗⟨1∣0⟩ + β∗β⟨1∣1⟩ (1.5)

= ∣α∣2 + ∣β∣2 (1.6)

= 1 (1.7)

Hence, we see that for a state the coefficients modules squared sums to 1. Consequently, the
coefficient modules squared determines the probability of measuring that particular state as we
will see in the third postulate.

1.2.2 Postulate 2: Evolution

The second postulate explains how a system evolves through time. For a closed system, the
state ∣ψ̃⟩ at time t1 is evolved according to the Schrödinger equation for some initial state ∣ψ⟩
at time t0. The mathematical formalism for this is

∣ψ̃⟩ = U ∣ψ⟩ (1.8)

where U is a unitary transformation operator.

Definition: A unitary operator U ∶ H → H on some Hilbert space H satisfies the following
property

U †U = UU † = I (1.9)

where I is the identity operator.

In Quantum Computing, unitary transformations appears everywhere and is often referred
to as Quantum Gates. Examples of some common unitary transformations in quantum com-
puting are the X,Y,Z, and Hadamard. The X,Y , and Z are π rotations around their respective

4

axis on the Bloch sphere. Meanwhile, the Hadamard is a special transformation that puts a
state into superpositions. Let us consider the same two-level system whose possible state is ∣0⟩
and ∣1⟩. Suppose the initial state is ∣ψ⟩ = ∣0⟩, then applying the Hadamard give us

∣0⟩ → ∣0⟩ + ∣1⟩√
2

(1.10)

As we will see in section 2 the unitary transformation operator we are interested in is the free
evolution operator

U = exp(− i
h̵
Ht) (1.11)

where H is the Hamiltonian of the system.

1.2.3 Postulate 3: Quantum Measurements

The third postulate describes the unique concept of performing quantum measurements on a
physical system. Let {Mn} be a set of measurement operators and let ∣ψ⟩ be the state before
a measurement has occurred. Then the probability of measuring the state with outcome result
m is

p(m) = ⟨ψ∣M †
mMm∣ψ⟩ (1.12)

and the post-measurement state is

∣ψ̃⟩ = Mm ∣ψ⟩√
p(m)

(1.13)

Additionally, it must be true that the sum of all probabilities p(m) is 1, thus

1 = ∑
m

p(m) (1.14)

= ∑
m

⟨ψ∣M †
mMm∣ψ⟩ (1.15)

= ⟨ψ∣∑
m

M †
mMm∣ψ⟩ (1.16)

Therefore, it follows from the above equation that

∑
m

M †
mMm = I (1.17)

This is known as the completeness relation.

1.3 Aims and Expectations

In this simulation we have four objectives. First is to observe the stochastic process from this
model. Second is to confirm that regardless of the particle’s initial wavefunction, over time it
will converge to a distinct gaussian shaped curve that depends on σ and time step t̃. Third is to
observe the classical-like tracks that emerges out of this quantum system as discussed in section
1.1. Fourth is to observe how the wave function behaves if we add a potential, specifically, a
double-peaked finite potential well. In theory, we should observe the wave function tunneling
through the finite potential at some point in time.

5

2 Methods

In this section, we will go through the theory and numerics concerning our model. First we
will outline the stochastic process of the model step by step. Then we will explore the theory
of this stochastic process which is known as the Markov Process and we will end this section
with a discussion of the numerical solution to the Schrödinger equation and the numerical
implementation of the process in the MATLAB software.

2.1 Process of the Model

In this model, we consider a single particle on a 1D with a Hilbert space L2(R). We denote X
and P to be the position and momentum operator, respectively. For a single particle, we ini-
tialize the particle’s state wavefunction ψ(x) at time t = 0 to be some square integrable function.

Definition: Let ψ ∶ R→ C be some function. Then ψ is square integrable if and only if

∫
R
∣ψ(x)∣2 dx < ∞ (2.1)

We denote the space of all such functions by L2(R).

As a remark, we can think of it as wavefunctions living in the Hilbert space. An example
of a square integrable wavefunction is ψ(x) = x2e−x

2
. It can easily be check by taking a direct

integration and utilizing integration by parts method. This function is rather special and will
appear frequently throughout the paper as our initial wavefunction. Recall the first postulate
of quantum mechanics where a physical system is completely described by the state vector and
the probability of the system being in a particular state is given by the coefficient modulus
squared. In our case, the wavefunction represent a continuous distribution of all possible states
and the probability of the system being in a state corresponding to position x̃ is simply ∣ψ(x̃)∣2.
Therefore, the sum of all probability must be 1 giving us the condition

∫ ∣ψ(x)∣2 dx = 1 (2.2)

This is also known as normalizing the wavefunction and we define the normalized wavefunction
to be

Ψ(x) = 1

∫ ∣ψ(x)∣2dxψ(x) (2.3)

We make the assumption that for every time step t̃, the particle will evolve according to the
Schrödinger equation

ih̵
∂Ψ

∂t
= − h̵

2

2m

∂2Ψ

∂x2
+ VΨ (2.4)

subject to the initial condition Ψ(x,0) = Ψ(x). The numerical method to solve the Schrödinger
equation will be explored in section 2.3. Moreover, using the definition of the momentum

6

operator and squaring it P2 = −h̵2 ∂2

∂x2
, we can rewrite the Schrödinger equation as

ih̵
∂Ψ

∂t
= − h̵

2

2m

∂2Ψ

∂x2
+ VΨ ⇒ ih̵

∂Ψ

∂t
= P2

2m
Ψ + VΨ (2.5)

⇒ ∂Ψ

∂t
= − i

h̵
[P

2

2m
+ V]Ψ (2.6)

⇒ ∂Ψ

∂t
= − i

h̵
HΨ (2.7)

⇒ Ψ(t) = exp(− i
h̵
Ht) (2.8)

where H is the Hamiltonian of the particle. For this model, this is simply the sum of the
particle’s kinetic energy and potential energy. As a result, we introduce an equivalent formalism
to the free evolution during time step t̃. Let U be a unitary evolution operator such that it
satisfy the Schrödinger equation. Then U = e−ih̵Ht̃ and the evolution through time step t̃ is

Ψ(x,1) =UΨ(x,0) = exp(− i
h̵
Ht̃)Ψ(x,0) (2.9)

subject to the initial condition Ψ(x,0) = Ψ(x).
One of the goals in this numerical simulation is to see classical trajectories appear from a

quantum system. That is we expect to observe a classical trajectory from multiple successive
position measurements on the particle. However, these measurements must not be direct as
it will collapse the wavefunction, therefore, we instead apply an indirect measurement on the
particle. This is achieved by randomly sampling a probability distribution. Let ξ be the position
measured. We introduce the jump operator

Vξ(x) =
1

(σ
√

2π)1/2
exp(−(X − ξ)2

4σ2
) (2.10)

Although in a different notation, this jump operator is precisely our measurement operator Mm

as described in the third postulate. Acting the jump operator to our evolved state, we define
our probability distribution to be

p(ξ) = ∫
R
∣Vξ(x)Ψ(x,1)∣2 dx (2.11)

and the position obtained is the ξ randomly sampled from p(ξ). This process is repeated n
times with the post measurement wavefunction defined as

ψ(x) = Vξ(x)Ψ(x,1) (2.12)

After n successive measurements, we have the position track (ξ1, ξ2, . . . , ξn) and the final wave-
function up to normalization A at time τn = nt̃ is

Ψ(x, τn) = AVξn exp(−ih̵Ht̃) . . . Vξ2 exp(−ih̵Ht̃)Vξ1 exp(−ih̵Ht̃)Ψ(x) (2.13)

It is worthy to note that for our simulations, constants h̵ and m are taken to be 1 for simplicity.

7

2.2 Markov Process

The step in which we define on equation (2.12) is a recursive step that appears in a process
known as Markov Process. We now state the general definition of a Markov Process, then we
will see how Markov process is applied to our model. In section 2.2, we separated each measure-
ments by some time step t̃. Hence, we are only concerned with the discrete-time Markov process.

Definition: Let S be some state space and some sequence of random variables {X0,X1,X2, . . .}.
A process {X0,X1,X2, . . .} is a Markov process if it satisfies the Markov condition

P(Xn+1 = sn+1∣X0 = s0,X1 = s1, . . . ,Xn = sn) = P(Xn+1 = sn+1∣Xn = sn) (2.14)

for s0, s1, . . . , sn, sn+1 ∈ S.

Additionally, we will also define the transition matrix. For a discrete number of random vari-
ables, a transition matrix is useful to visualize the probabilities of transitioning from one state
to another.

Definition: A transition matrix P is a ∣S∣ × ∣S∣ matrix with entries pij

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 . . .
p21 p22 p23 . . .
p31 p32 p33 . . .
⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.15)

where pij are the transition probabilities defined as

pij = P(Xn+1 = j∣Xn = i) (2.16)

Moreover, a transition matrix has the following properties

1. Every entries pij in matrix P are non-negative, pij ≥ 0 for all i, j,

2. The sum of each row equals to 1, ∑j pij = 1 for all i

To put this into practice, let us consider a simple example of a random walk. Let our state
space be S = {0,1,2,3, . . .}. Suppose we have the following transition probabilities

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p if j = i + 1, i = 1,2,3, . . .

q = 1 − p if j = i − 1, i = 1,2,3, . . .

1 if i = 0, j = 0

0 otherwise

(2.17)

Then we have the following transition matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . . .
1 − p 0 p 0 0 . . .

0 1 − p 0 p 0 . . .
0 0 1 − p 0 p . . .
⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.18)

8

In this random walk example, this is indeed a Markov process since the next state is purely
determined by the current state. If the current state is i = 3 ∈ S, then the next state is
determined by probabilities p and 1 − p for outcomes states i = 4 and i = 2, respectively.
Additionally, if the state is i = 0, then regardless of previous states, it will stay at i = 0.

Now, we will see how our model is a Markov process. Let our state space be the Hilbert
space L2(R). Then if the process, as described in section 2.1, is indeed a Markov process then
it must satisfy the Markov condition

P(Ψn+1∣Ψn,Ψn−1, . . . ,Ψ1,Ψ0) = P(Ψn+1∣Ψn) (2.19)

Indeed, according to equation (2.12), the next state is given by Ψn+1 = Ψ̃n+1
∫ ∣Ψ̃n+1∣2dx

where Ψ̃n+1 =
Vξ exp(−iHt)Ψn and Ψn is the current state of the system. This is the recursive relation that we
are looking for in a Markov process; where the outcome state is only dependent on the current
state of the system and independent of any previous states. Additionally, the probability that
the system will transition into some state Ψn+1 for some ξ̃ ∈ R is given by equation (2.11)

P(Ψn+1∣Ψn) = p(ξ̃) = ∫
R
∣Vξ̃Ψn∣2 dx (2.20)

and only depends on state Ψn. Therefore, the model is a Markov process implying that the
model is stochastic. It is also important to note that the model is somewhat different from the
regular Markov process as seen in the example above. This difference is a consequence from
performing measurements at each recursive step, where the next state Ψn+1 is only determined
when making a state transition and reversibility does not happen. In other words, this process
only evolves forward and does not jump backwards in states.

2.3 Numerical Solution and MATLAB Implementation

In this section, we will go through the numerical method of solving the Schrödinger equation
as described in equation (2.9) and see how this is implemented in the MATLAB software. The
method we have chosen to solve the Schrödinger equation is through the Fourier transform
method. Without a present potential, the Fourier transform is sufficient in giving a solution
to the Schrödinger equation. However, when a potential is present, we use the Trotter Kato
product formula in addition to the Fourier transform method to give an approximate solution
to the Schrödinger equation. Lastly, we will briefly explore the implementation of performing
an measurement in MATLAB.

2.3.1 Solving the Schrödinger Equation and the Implementation

We begin with the analytical solution to the Schrödinger equation for no potential, then we
follow up the solution by adding a potential and using the Trotter Kato product formula.
The MATLAB implementation, Algorithm 1, of the solution uses the combination of Fourier
transform and Trotter-Kato product formula. If there is a potential present, then this imple-
mentation will give us an approximate solution. On the other hand, if there is no potential
then V (x) in Algorithm 1 will be set to 0 and the algorithm will just become Fourier transform
method without the Trotter Kato aspect.

9

Definition: Let x be our position space and p be our momentum space. Then

F{Ψ(x, t)} = Ψ̂(p, t) = 1√
2π
∫
R

Ψ(x, t) exp(−ipx) dx (2.21)

is the Fourier Transform of Ψ(x, t), and

F−1{Ψ̂(p, t)} = Ψ(x, t) = 1√
2π
∫
R

Ψ̂(p, t) exp(ipx) dp (2.22)

is the Inverse Fourier Transform of Ψ̂(p, t)

Consider the simpler form of the Schrödinger equation where constants such as m, h̵ have
been set to 1 and potential V (x) = 0,

∂Ψ

∂t
= i∂

2Ψ

∂x2
(2.23)

on x ∈ (−∞,∞) and t ∈ [0,∞) subject to the initial condition Ψ(x,0) = Ψ(x). Let Ψ̂(p, t) be
the Fourier transform of our solution Ψ(x, t). Then taking advantage of Fourier’s identity of a
derivative

F { ∂2

∂x2
Ψ(x, t)} = −p2Ψ̂(p, t) (2.24)

Then substituting into equation (2.23), we have the equation in the momentum space

∂Ψ̂(p, t)
∂t

= −ip2Ψ̂(p, t) (2.25)

subject to the Fourier transformed initial condition Ψ̂(p,0) = Ψ̂(p). Notice that the PDE
becomes an ODE and this ODE is in the form of a trivial ODE with the solution

Ψ̂(p, t) = A(p) exp(−ip2t) I.C.ÔÔ⇒ Ψ̂(p, t) = Ψ̂(p,0) exp(−ip2t) (2.26)

We now state the Convolution Theorem as this will prove useful in the derivation of the solution.

Definition: Let f(x) and g(x) be some arbitrary function. The convolution is a binary oper-
ation on f, g such that

(f ∗ g)(x) = ∫
R
f(x − γ)g(γ) dγ (2.27)

Theorem: Let f(x) and g(x) be two arbitrary function with the Fourier transform f̂(p) and
ĝ(p). Then

F−1 {f̂(p)ĝ(p)} = F−1{f̂(p)} ∗ F−1{ĝ(p)} = (f ∗ g)(x) (2.28)

where ∗ denotes the convolution binary operation.

10

Proof. We want to show F−1 {f̂(p)ĝ(p)} = (f ∗ g)(x). Let f(x) and g(x) be

two functions with F.T. f̂(p) and ĝ(p). We consider the Fourier transform of
their convolution, F{(f ∗ g)(x)}. Using the definition of convolution and Fourier
transform, we have

F{(f ∗ g)(x)} = F {∫
R
f(x − γ)g(γ) dγ} (2.29)

= ∫
R
∫
R
f(x − γ)g(γ) exp(−ipx) dγdx (2.30)

= ∫
R
∫
R
f(y)g(γ) exp(−ipy) exp(−ipγ) dγdy (2.31)

= ∫
R
f(y) exp(−ipy) dy ⋅ ∫

R
g(γ) exp(−ipγ) dγ (2.32)

= F{f(y)} ⋅ F{g(γ)} (2.33)

= f̂(p)ĝ(p) (2.34)

Thus we have the relation, F{(f ∗ g)(x)} = f̂(p)ĝ(p). Taking the Inverse Fourier
transform, we have

F−1 {F{(f ∗ g)(x)}} = F−1{f̂(p)ĝ(p)} ⇒ (f ∗ g)(x) = F−1{f̂(p)ĝ(p)} (2.35)

Hence, we have proved our desired result. ∎

Consequently, an alternative form to the theorem is F{(f ∗g)(x)} = f̂(p)ĝ(p). Therefore, using
this relation and taking the Inverse Fourier transform of equation (2.26), we have

F−1 {Ψ̂(p, t)} = F−1 {Ψ̂(p,0) ⋅ exp(−ip2t)} (2.36)

Ψ(x, t) = F−1 {(Ψ̂(p,0) ⋅ 1) ⋅ exp(−ip2t)} (2.37)

Ψ(x, t) = F−1 {F {(Ψ ∗ 1)(x,0)} ⋅ exp(−ip2t)} (2.38)

Ψ(x, t) = F−1 {F {Ψ(x,0)} ⋅ exp(−ip2t)} (2.39)

Hence, we arrive at our solution to the Schrödinger equation with the abstract form

Ψ(x, t) = F−1 {F {Ψ(x,0)} ⋅ exp(−ip2t)} (2.40)

Expressing Fourier transform as an integral, the analytical solution becomes (with a change of
variable to denote a different integration for F {Ψ(x,0)})

Ψ(x, t) = F−1 {F {Ψ(x,0)} ⋅ exp(−ip2t)} (2.41)

= F−1 { 1√
2π
∫
R

Ψ(y,0) exp(−ipy) exp(−ip2t) dy} (2.42)

= 1

2π
∫
R
∫
R

Ψ(x,0) exp(ipx) exp(−ipy) exp(−ip2t) dp dy (2.43)

Although we arrived at equation (2.43) with the Fourier transform method, it is also possible to
derive the same solution by considering separable solution to the Schrödinger equation (time-
independent and time-dependent solutions), and noting that the general solution is a linear

11

combination of continuous momentum variable p instead of some discrete states as seen in
some common quantum mechanics examples. Even though we derived an analytical solution,
we can obtain a numerical solution by simply considering a discrete Fourier transform rather
than a continuous one as we will see later.

We will now consider the Schrödinger equation with a potential. The potential of interest
to us is the double-peaked finite potential well. This particular potential will allow us to see
how the wavefunction will behave as it goes near the potential and potentially see the unique
effect of quantum tunneling that is impossible classically. For our analytical solution, we will
simply consider a general potential V (x). First we will state a necessary theorem from “Meth-
ods of Modern Mathematical Physics” by Reed and Simon [5] for the approximate solution to
the Schrödinger equation with a potential.

Theorem (Lie-Trotter-Kato product formula): Let A and B be self-adjoint operators on
the Hilbert space H and suppose C = A +B is self-adjoint on D =D(A) ∩D(B). Then

s − lim
n→∞

(exp(it
∆
A) exp(it

∆
B))

∆

= exp(itC) (2.44)

We should note that D is the domain restriction depended on the intersection of the domain
A and domain B. In our model, we have A ∶= p2 and B ∶= V and since V is defined in the
whole Hilbert space, the restriction is immediately satisfy. Recall equation (2.9), for arbitrary
time t, the evolution is defined as Ψ(x, t) = exp(−iHt)Ψ(x,0) where the hamiltonian is defined
as H = p2 + V where V is the potential and constants have been set to 1. Applying the Lie-
Trotter-Kato product formula, we can approximate equation (2.9) as

Ψ(x, t) = exp(−iHt)Ψ(x,0) (2.45)

= exp(−it(p2 + V))Ψ(x,0) (2.46)

≈ exp(−itp2/∆) exp(−itV /∆) . . . exp(−itp2/∆) exp(−itV /∆)
´¹¹¹¸¹¹¶

∆ times of exp(−itp2/∆) exp(−itV /∆)

Ψ(x,0) (2.47)

The solution to equation (2.47) is rather straight forward. We simple consider applying equa-
tion (2.40) n times. In other words, we solve for exp(−itp2/n)Ψ(x,0) with equation (2.40) and
multiple it with exp(−itV /n) and define that to be Ψ′. Using Ψ′ as our Ψ(x,0) we iterate
this process n times with equation (2.40) at which we will arrive at an approximate solution to
Ψ(x, t).

The MATLAB implementation is shown in Algorithm 1. This implementation considers
a general potential V (x), and uses both the Fourier transform method and Trotter-Kato prod-
uct formula. For a numerical approximation to equation (2.40), we use the built in MATLAB
function Fast Fourier transform (FFT) and Inverse Fast Fourier transform (IFFT) which is
equivalent to a discrete Fourier transforms. Moreover, with our chose of discrete Fourier trans-
forms, we need to specify an interval for which FFT and IFFT will be evaluated. The interval
range we have chosen is (x̃ − 40, x̃ + 40) for some center x̃ with spacing δx = 0.02. Lastly, our
chose of ∆ is 20 as this is a sufficient amount of iterations.

12

Algorithm 1 Solution to Schrödinger Equation

procedure Schrödinger Soln(Ψn , V (x))
v← Ψn

while j ≤ n do
∆← 20
while k ≤ ∆ do

v’← compute fast fourier transform of s

v’← evolve s’ with time evolution operator

v← compute inverse fast fourier transform of s’

v← add potential V (x) for a time discretize by ∆
k = k + 1

end while
j = j + 1

end while
return Ψn

end procedure

2.3.2 Measurement Implementation

The implementation of (2.10) and (2.11) is shown in Algorithm 2. This procedure isn’t as tech-
nical as Algorithm 1 as it just simply involves MATLAB evaluations of functions. However, we
must consider every step numerically. Since (2.10) is a function of both ξ and x, we represent
the jump operator in MATLAB as a 2-D array. The probability distribution is obtained by
taking a numerical integration with spacing δx = 0.02. Additionally, the random sampling of ξ
is acquired through sampling the 1D array of positions with weighted probabilities as described
by (2.11).

Algorithm 2 Position Measurement

procedure Measurement(Ψn, σ)
v← Ψn

s← σ
while j ≤ n do

V← Vξ(x)
v’←Vv
p(ξ) ← probability distribution defined as ∫ ∣v’∣2dx
ξ⃗ ← randomly sample p(ξ)
j = j + 1

end while
return ξ⃗

end procedure

13

3 Results

In this section, we display some simulations of various cases and discuss the four objectives
mention in section 1.3. Before we begin, we state some useful equations used in the generation
of the plots below. First, we define the position expectation to be

⟨x⟩ = ⟨Ψ∣x∣Ψ⟩ = ∫
R
x∣Ψ∣2 dx (3.1)

and this can be numerically approximated with a summation since we discretized x and con-
sidered a finite interval. Second, we also define the variance to be

V ar(x) = ∫
R
(x − µ)2f(x) dx (3.2)

In our model, µ is simply the position expectation ⟨x⟩ and f(x) is our wavefunction modulus
squared ∣Ψ∣2.

(a) Expectation Plot (Simulation 1) (b) Variance Plot (Simulation 1)

(c) Expectation Plot (Simulation 2) (d) Variance Plot (Simulation 2)

Figure 1: Left and right shows the position expectation and variance plot, respectively, for three different
initial state (Blue: ψ = exp(−x2), Purple: ψ = x2 exp(−x2), Red: 1

π
b

(x−a)2+b2 with a=0, b=0.5). The solid line

denotes one simulation and the dotted line denotes another simulation of the same initial state. The simulation
is generated with parameters σ = 7, t̃ = 0.1, and V (x) = 0. The top two plot ran with 200 time step iteration
while the bottom two plot ran with 500 iterations. Note: The top two plot are from the same simulations, while
the bottom two are from another simulation.

14

The first objective is to observe the stochastic process as described in section 2.2. We
chose initial states such that it is centered at zero, and from postulate 3 the probability of
the state being on the left or right is 50%. Therefore, as the wavefunction evolves through
time, the particles trajectory is random and not predetermined. As seen in figure 1 and 2, the
position expectation plots depicts the randomness of this process. Although on the larger scale,
the behavior trend might look similar and predetermined, each curve represents a different
simulation that branches off in a direction not known to us. Moreover, these expectation plots
are the classical trajectories that we seek in our third objective. It’s classical nature refers to the
distinct direction and speed the particle propagated in. More importantly, the particle “picks
up” this velocity at random throughout its evolution and once the particle has some velocity
it moves in that direction in a straight line. This is beautifully captured in figure 1. Figure 1a
shows the trajectories for 200 time step iterations simulation runs and has rough curves with
a somewhat noticeable velocity. However, if we ran another simulation for a longer period of
time (500 iterations), these trajectories becomes more distinct in their speed and direction.

(a) Position Expectation (Simulation 3) (b) Variance (Simulation 3)

(c) Position Expectation (Simulation 4) (d) Variance (Simulation 4)

Figure 2: Left and right shows the position expectation and variance plot, respectively, for the initial state
ψ = x2 exp(−x2) with varying σ (top) and time step t̃ (bottom). The simulation is generated with parameters

σ = 7 (bottom only), t̃ = 0.1 (top only), and V (x) = 0. Both simulation is ran with 200 time step iterations.

Our second objective was to observe the wavefunction converging to a distinct gaussian

15

curve that depends on σ and t̃. The variance plot shows precisely the convergence of the
wavefunction over time. In figure 1b, we see very noisy curves in the beginning that eventually
disappear around time step iteration 80. Also, this convergence is not due to some off chance
that occur from a random process. We ran another simulation for a longer period of time
and the result holds as seen in figure 1d. Additionally, we ran simulation for initial state
ψ = x2 exp(−x2) with varying time step t̃ and σ. The outcome we see in figure 2b and 2d
displays a different convergence as we vary those parameters. Moreover, the time it takes to
converge also depends on the parameters as seen in the two figures.

Lastly we simulate with a potential present, specifically, a double finite potential well.
Figure 4 shows the wavefunctions at different time. The tunneling effect can be seen in the top
right plot in figure 4 where the red curve begins to tunnel while the purple curve has tunneled
through. This can also be seen in the trajectory plot where the red and purple curve leaves
the confined region while the whole blue curve is still present. Additionally, the converge of the
variance does not occur until the particle fully tunnels through the potential barrier as seen in
figure 3b.

(a) Position Expectation (Simulation 5) (b) Variance (Simulation 5)

Figure 3: Left and right shows the position expectation and variance plot, respectively, for three different
initial state (Blue: ψ = exp(−x2), Purple: ψ = x2 exp(−x2), Red: 1

π
b

(x−a)2+b2 with a=0, b=0.5). The simulation

is generated with parameters σ = 7, t̃ = 0.1, and V (x) = 2. The simulation is ran for 200 time step iterations.

It is also worthy to note the difference between a quantum system with measurement and
without measurement. Figure 4 and 5 describes the symmetry broken as a result of performing a
measurement on a quantum system. We know that the wavefunction is centerd at zero. With a
measurement, the wavefunction symmetry about the center is broken as the whole curve moves
left or right. Meanwhile, without the measurement the wavefunction’s symmetry is preserved
with more oscillation as it evolves in time. In a sense, it becomes more like a wave and exhibits
properties of a wave.

16

Figure 4: Time step iteration at 0, 15, 30, 45, 60, 75 for simulation 5.

Figure 5: Simulation with no measurement of initial state ψ = x2 exp(−x2)

4 Conclusion

As demonstrated in this paper, we have simulated particle tracks in a detector and observed
classical trajectories emerging from a quantum system. Specifically, we considered a stochastic
model that represents the state of a particle by some arbitrary square integrable function. An
assumption is made on the evolution such that during time step t̃, the wavefunction evolves
according to the free evolution operator 2.8 as described by the Schrödinger equation. An

17

additional assumption was made for simplicity where each measurement separated by the time
step t̃. Moreover, we have seen that with figure 4 and 5, symmetry seen in classical systems is
broken as a result of performing a measurement. Measurement in this model is represented by
a gaussian jump operator 2.10.

We have explored various cases such as how the wavefunction behaves with and without
potential, and its behavior over time with varying parameters σ and time step t̃. Most im-
portantly, we have simulated the propagation of a particle and tracked its position expectation
which showed a line with a distinct direction and speed which is what we expect from a classical
trajectory.

This paper simulates the specific case of a particle propagating in a 1D space. However, a
particle in a cloud chamber can also propagate in all direction in a 3D space. In other words,
we have placed a restriction on the particle’s propagation direction in this simulation. This
restriction can be lifted by considering a 3D Schrödinger equation and solving it in all three
coordinate space. In doing so, it will model a particle’s track in a more realistic scenario and
will allow us to better understand its behavior. Additionally, we have considered a measure-
ment operator that was gaussian. However, not all detectors can be represented in a gaussian
operator, thus we can extend this work to simulate trajectories for a non-gaussian measurement
operator.

18

Acknowledgement

I would like to take this chance to thank Professor Martin Fraas for his patience and guidance
throughout this project. The discussions we had were very informative and I have learned a
lot from it. I would like to also thank the University Honors Program for giving me the push I
needed to be involved in research.

References

[1] M. Ballesteros, T. Benoist, M. Fraas, and J. Fröhlich. The appearance of particle tracks in
detectors. Communications in Mathematical Physics, 385:429–463, 2021.

[2] R. Figari and A. Teta. Emergence of classical trajectories in quantum systems: the cloud
chamber problem in the analysis of mott (1929). Archive for history of exact sciences, 67
(2):215–234, 2013.

[3] N. F. Mott. The wave mechanics of alpha-ray tracks. Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character, 126(800):
79–84, 1929.

[4] M. A. Nielsen and I. Chuang. Quantum computation and quantum information, 2002.

[5] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Functional Analysis;
Rev. ed. Academic press, 1980.

19

Appendix

A. Solving Schrödinger Equation Code

1 func t i on [p s i] = So lve Schrod inger Eq (n , dx , dt ,X, ps i , p o t e n t i a l)
2 N = length (X(1 , :)) ;
3 f o r j = 1 : n
4 t = dt ;
5 d e l t a = 20 ;
6 f o r m = 1 : de l t a
7 phi = f f t (p s i (j , :)) *dx ;
8 dp = 2* pi /(N*dx) ;
9 p = (−N/2 :N/2−1)*dp ;

10 p h i s h i f t = f f t s h i f t (phi) ;
11 p h i s h i f t e v e n = p h i s h i f t (2 : 2 : end) *−1;
12 p h i s h i f t (2 : 2 : end) = p h i s h i f t e v e n ;
13 t ime evo = exp(−1 i .*p . ˆ 2 . * t / d e l t a) ;
14 phi = p h i s h i f t .* t ime evo ;
15 p s i t i m e e v o = i f f t s h i f t (i f f t (phi) /dx) ; %s t a t e p s i a f t e r time

evo lu t i on
16 p s i t i m e e v o e v e n = p s i t i m e e v o (2 : 2 : end) *−1;
17 p s i t i m e e v o (2 : 2 : end) = p s i t i me e v o e v e n ;
18 p s i t i m e e v o = p s i t i m e e v o .* exp(−1 i .* p o t e n t i a l (j , :) .* t / d e l t a) ;
19 p s i (j , :) = p s i t i m e e v o ;
20 end
21 end
22 end

B. Measurement Code

1 func t i on [ps i , x i] = Pos i t ion Meas (n , dx ,X,C, xi , ps i , sigma , k)
2 f o r j = 1 : n
3 s = sigma ;
4 p s i t i m e e v o = p s i (j , :) ;
5 jump op = @(x , c) exp (−((x−c) . ˆ 2) /(4* s ˆ2)) /(s ˆ(1/2) *(2* pi) ˆ(1/4)) ;
6 jump op eval = bsxfun (jump op ,X(j , :) ' ,C(j , :)) ;
7 new ps i t ime evo = jump op eval .* p s i t i m e e v o ;
8 p r o b d i s t = trapz (abs (new ps i t ime evo) . ˆ 2 , 2) *dx ;
9

10 pos measure = datasample (C(j , :) ,1 ,” weights ” , p r o b d i s t) ;
11
12 x i (j , k) = pos measure ;
13 p s i (j , :) = jump op (X(j , :) , x i (j , k)) .* p s i t i m e e v o ;
14 c l e a r pos measure ;
15 end
16 end

C. Interval Shift Code

1 func t i on [ps i ,X,C, state mean] = I n t e r v a l S h i f t (dx , n , X i n i t i a l ,X,C, p s i)
2 state mean = ze ro s (n , 1) ;
3 f o r j = 1 : n

20

4 c en t e r i ndx = (X i n i t i a l (end)+dx−X i n i t i a l (1)) /(2*dx) +1;
5 state mean (j , 1) = sum(X(j , :) .* abs (p s i (j , :) . ˆ 2)) *dx ;
6 [˜ , mean indx] = min (abs (X(j , :)−state mean (j , 1))) ;
7 mean X = X(j , mean indx) ;
8 X d i f f = mean indx−c en t e r i ndx ;
9 X(j , :) = mean X−40:dx : (mean X+40)−dx ;

10 C(j , :) = mean X−40:dx : (mean X+40)−dx ;
11 i f X d i f f > 0 % moved to the r i g h t
12 p s i (j , :) = [p s i (j , X d i f f +1:end) p s i (j , X d i f f : −1:1)] ;
13 e l s e i f X d i f f < 0 % moved to the l e f t
14 X d i f f = abs (X d i f f) ;
15 p s i (j , :) = [p s i (j , end : −1: end−(X d i f f −1)) p s i (j , 1 : end−X d i f f)] ;
16 end
17 end
18 end

D. Generation Code

1 %% −−−−−−−−−−−− Three State Simulat ion with Movie/ Pos i t i on Expectat ion / Variance
−−−−−−−−−−−− %%

2 c l c ; c l e a r ;
3 format shor t
4 workspace ;
5
6 n = 6 ;
7 t = 500 ;
8 f r e q = 50 ;
9 dx = 1/ f r e q ;

10 X i n i t i a l = −40:dx:40−dx ;
11 C i n i t i a l = −40:dx:40−dx ;
12 N = length (X i n i t i a l) ;
13 sigma = 7 ;
14 dt = 0 . 1 ;
15 X = ze ro s (n ,N) ;
16 C = ze ro s (n ,N) ;
17 f o r j = 1 : n
18 X(j , :) = X i n i t i a l ;
19 C(j , :) = C i n i t i a l ;
20 end
21
22 b = 0 . 5 ;
23 a = 0 ;
24 i n i t i a l p s i 1 = exp(− X i n i t i a l . ˆ 2) ;
25 i n i t i a l p s i 2 = X i n i t i a l . ˆ 2 . * exp(− X i n i t i a l . ˆ 2) ;
26 i n i t i a l p s i 3 = (1/ p i) *(b . / ((X i n i t i a l −a) . ˆ2 + b . ˆ 2)) ;
27
28 p o t e n t i a l = ze ro s (n ,N) ;
29
30 s t a t e p s i = [i n i t i a l p s i 1 ; i n i t i a l p s i 1 ; i n i t i a l p s i 2 ; i n i t i a l p s i 2 ; i n i t i a l p s i 3 ;

i n i t i a l p s i 3] ;
31 x i = ze ro s (n , t) ;
32 var i ance = ze ro s (n , t) ;
33 p o s i t i o n e x p e c t a t i o n = ze ro s (n , t) ;
34
35 allTheFrames = c e l l (1 , t) ;

21

36 allTheColorMaps = c e l l (1 , t) ;
37 myMovie = s t r u c t (' cdata ' , allTheFrames , 'colormap ' , allTheColorMaps) ;
38
39 f o r k = 1 : t
40 f o r j = 1 : n
41 A = 1/ s q r t (sum(abs (s t a t e p s i (j , :)) . ˆ 2) *dx) ;
42 s t a t e p s i (j , :) = A* s t a t e p s i (j , :) ;
43 end
44
45 [s t a t e p s i ,X,C, state mean] = I n t e r v a l S h i f t (dx , n , X i n i t i a l ,X,C, s t a t e p s i) ;
46 f o r j = 1 : n
47 p o s i t i o n e x p e c t a t i o n (j , k) = state mean (j , 1) ;
48 temp state = (X(j , :)−state mean (j , 1)) . ˆ 2 . * (abs (s t a t e p s i (j , :)) . ˆ 2) ;
49 var iance (j , k) = sum(temp state) *dx ;
50 end
51
52 p o t e n t i a l v a l = p o t e n t i a l ;
53
54 c l a r e s e t ;
55 ax = gca ;
56 hold on ;
57 p l o t (X(1 , :) , abs (s t a t e p s i (1 , :)) . ˆ 2 , 'LineWidth' , 2 , 'Color ' , 'b') ;
58 hold on ;
59 p l o t (X(2 , :) , abs (s t a t e p s i (2 , :)) . ˆ 2 , ” : ” , 'LineWidth' , 2 , 'Color ' , 'b') ;
60 hold on ;
61 p l o t (X(3 , :) , abs (s t a t e p s i (3 , :)) . ˆ 2 , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
62 hold on ;
63 p l o t (X(4 , :) , abs (s t a t e p s i (4 , :)) . ˆ 2 , ” : ” , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
64 hold on ;
65 p l o t (X(5 , :) , abs (s t a t e p s i (5 , :)) . ˆ 2 , 'LineWidth' , 2 , 'Color ' , ' r ') ;
66 hold on ;
67 p l o t (X(6 , :) , abs (s t a t e p s i (6 , :)) . ˆ 2 , ” : ” , 'LineWidth' , 2 , 'Color ' , ' r ') ;
68 hold on ;
69 temp t = k−1;
70 t i t l e (” t = ” + temp t)
71 legend (” exp(−x ˆ2) ” ,”” ,” xˆ2exp(−x ˆ2) ” ,”” ,”(1/ p i) *(b /((x−a) ˆ2 + bˆ2)) ” ,””)
72 ax . YLim = ([0 , 0 . 7]) ;
73 ax . XLim = ([−20 ,20]) ;
74 x l a b e l ('x')
75 y l a b e l (' | p s i (x) |ˆ2 ')
76 drawnow ;
77 myMovie (k) = getframe (gc f) ;
78
79 s t a t e p s i = So lve Schrod inger Eq (n , dx , dt ,X, s t a t e p s i , p o t e n t i a l v a l) ;
80 [s t a t e p s i , x i] = Pos i t ion Meas (n , dx ,X,C, xi , s t a t e p s i , sigma , k) ;
81 end
82
83 Replay Save Movie (myMovie)
84
85 f i g u r e ;
86 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (1 , :) , 'LineWidth' , 2 , 'Color ' , 'b') ;
87 hold on ;
88 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (2 , :) , ” : ” , 'LineWidth' , 2 , 'Color ' , 'b') ;
89 hold on ;
90 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (3 , :) , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
91 hold on ;

22

92 p lo t (0 : t −1, p o s i t i o n e x p e c t a t i o n (4 , :) , ” : ” , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
93 hold on ;
94 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (5 , :) , 'LineWidth' , 2 , 'Color ' , ' r ') ;
95 hold on ;
96 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (6 , :) , ” : ” , 'LineWidth' , 2 , 'Color ' , ' r ') ;
97 y l a b e l ('Pos i t i on Expectat ion ')
98 %ylim ([−20 ,20])
99 legend (” exp(−x ˆ2) ” ,”” ,” xˆ2exp(−x ˆ2) ” ,”” ,”(1/ p i) *(b /((x−a) ˆ2 + bˆ2)) ” ,””)

100
101 f i g u r e ;
102 p l o t (0 : t −1, var iance (1 , :) , 'LineWidth' , 2 , 'Color ' , 'b') ;
103 hold on ;
104 p l o t (0 : t −1, var iance (2 , :) , ” : ” , 'LineWidth' , 2 , 'Color ' , 'b') ;
105 hold on ;
106 p l o t (0 : t −1, var iance (3 , :) , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
107 hold on ;
108 p l o t (0 : t −1, var iance (4 , :) , ” : ” , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
109 hold on ;
110 p l o t (0 : t −1, var iance (5 , :) , 'LineWidth' , 2 , 'Color ' , ' r ') ;
111 hold on ;
112 p l o t (0 : t −1, var iance (6 , :) , ” : ” , 'LineWidth' , 2 , 'Color ' , ' r ') ;
113 x l a b e l (' t ')
114 y l a b e l ('Variance ')
115 %ylim ([−20 ,20])
116 legend (” exp(−x ˆ2) ” ,”” ,” xˆ2exp(−x ˆ2) ” ,”” ,”(1/ p i) *(b /((x−a) ˆ2 + bˆ2)) ” ,””)
117
118
119 %% −−−−−−−−−−−− S i n g l e State S imulat ion with Movie/ Pos i t i on Expectat ion / Variance

Vary Sigma −−−−−−−−−−−− %%
120 c l c ; c l e a r ;
121 format shor t
122 workspace ;
123
124 n = 5 ;
125 t = 500 ;
126 f r e q = 50 ;
127 dx = 1/ f r e q ;
128 X i n i t i a l = −40:dx:40−dx ;
129 C i n i t i a l = −40:dx:40−dx ;
130 N = length (X i n i t i a l) ;
131 sigma = [2 , 4 , 6 , 8 , 1 0] ;
132 dt = 0 . 1 ;
133 X = ze ro s (n ,N) ;
134 C = ze ro s (n ,N) ;
135 f o r j = 1 : n
136 X(j , :) = X i n i t i a l ;
137 C(j , :) = C i n i t i a l ;
138 end
139
140 b = 0 . 5 ;
141 a = 0 ;
142 i n i t i a l p s i = X. ˆ 2 . * exp(−X. ˆ 2) ;
143
144
145 p o t e n t i a l = ze ro s (n ,N) ;
146

23

147
148 s t a t e p s i = i n i t i a l p s i ;
149 x i = ze ro s (n , t) ;
150 var i ance = ze ro s (n , t) ;
151 p o s i t i o n e x p e c t a t i o n = ze ro s (n , t) ;
152
153 allTheFrames = c e l l (1 , t) ;
154 allTheColorMaps = c e l l (1 , t) ;
155 myMovie = s t r u c t (' cdata ' , allTheFrames , 'colormap ' , allTheColorMaps) ;
156
157 f o r k = 1 : t
158 f o r j = 1 : n
159 A = 1/ s q r t (sum(abs (s t a t e p s i (j , :)) . ˆ 2) *dx) ;
160 s t a t e p s i (j , :) = A* s t a t e p s i (j , :) ;
161 end
162
163 [s t a t e p s i ,X,C, state mean] = I n t e r v a l S h i f t (dx , n , X i n i t i a l ,X,C, s t a t e p s i) ;
164 f o r j = 1 : n
165 p o s i t i o n e x p e c t a t i o n (j , k) = state mean (j , 1) ;
166 temp state = (X(j , :)−state mean (j , 1)) . ˆ 2 . * (abs (s t a t e p s i (j , :)) . ˆ 2) ;
167 var iance (j , k) = sum(temp state) *dx ;
168 end
169
170 p o t e n t i a l v a l = p o t e n t i a l ;
171
172
173 c l a r e s e t ;
174 ax = gca ;
175 hold on ;
176 f o r j = 1 : n
177 hold on ;
178 p l o t (X(j , :) , abs (s t a t e p s i (j , :)) . ˆ 2 , 'LineWidth' , 2) ;
179 temp t = k−1;
180 t i t l e (” t = ” + temp t)
181 hold on ;
182 end
183 legend (” sigma = 2” , ” sigma = 4” ,” sigma = 6” ,” sigma = 8” ,” sigma = 10”)
184 ax . YLim = ([0 , 0 . 7]) ;
185 ax . XLim = ([−20 ,20]) ;
186 x l a b e l ('x')
187 y l a b e l (' | p s i (x) |ˆ2 ')
188 drawnow ;
189 myMovie (k) = getframe (gc f) ;
190
191 s t a t e p s i = So lve Schrod inger Eq (n , dx , dt ,X, s t a t e p s i , p o t e n t i a l v a l) ;
192 [s t a t e p s i , x i] = Pos i t ion Meas (n , dx ,X,C, xi , s t a t e p s i , sigma , k) ;
193 end
194
195 Replay Save Movie (myMovie)
196
197 f i g u r e ;
198 f o r j = 1 : n
199 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (j , :) , 'LineWidth' , 2)
200 x l a b e l (' t ')
201 y l a b e l ('Pos i t i on Expectat ion ')
202 hold on ;

24

203 end
204 legend (” sigma = 2” , ” sigma = 4” ,” sigma = 6” ,” sigma = 8” ,” sigma = 10”)
205
206 f i g u r e ;
207 f o r j = 1 : n
208 p l o t (0 : t −1, var iance (j , :) , 'LineWidth' , 2)
209 x l a b e l (' t ')
210 y l a b e l (' var iance ')
211 hold on ;
212 end
213 legend (” sigma = 2” , ” sigma = 4” ,” sigma = 6” ,” sigma = 8” ,” sigma = 10”)
214
215
216 %% −−−−−−−−−−−− S i n g l e State S imulat ion with Movie/ Pos i t i on Expectat ion / Variance

Vary dt −−−−−−−−−−−− %%
217 c l c ; c l e a r ;
218 format shor t
219 workspace ;
220
221 n = 5 ;
222 t = 500 ;
223 f r e q = 50 ;
224 dx = 1/ f r e q ;
225 X i n i t i a l = −40:dx:40−dx ;
226 C i n i t i a l = −40:dx:40−dx ;
227 N = length (X i n i t i a l) ;
228 sigma = 7 ;
229 dt = [0 . 0 5 , 0 . 1 , 0 . 3 , 0 . 7 , 1] ;
230 X = ze ro s (n ,N) ;
231 C = ze ro s (n ,N) ;
232 f o r j = 1 : n
233 X(j , :) = X i n i t i a l ;
234 C(j , :) = C i n i t i a l ;
235 end
236
237 i n i t i a l p s i = X. ˆ 2 . * exp(−X. ˆ 2) ;
238
239
240 p o t e n t i a l = ze ro s (n ,N) ;
241
242
243 s t a t e p s i = i n i t i a l p s i ;
244 x i = ze ro s (n , t) ;
245 var i ance = ze ro s (n , t) ;
246 p o s i t i o n e x p e c t a t i o n = ze ro s (n , t) ;
247
248 allTheFrames = c e l l (1 , t) ;
249 allTheColorMaps = c e l l (1 , t) ;
250 myMovie = s t r u c t (' cdata ' , allTheFrames , 'colormap ' , allTheColorMaps) ;
251
252 f o r k = 1 : t
253 f o r j = 1 : n
254 A = 1/ s q r t (sum(abs (s t a t e p s i (j , :)) . ˆ 2) *dx) ;
255 s t a t e p s i (j , :) = A* s t a t e p s i (j , :) ;
256 end
257

25

258 [s t a t e p s i ,X,C, state mean] = I n t e r v a l S h i f t (dx , n , X i n i t i a l ,X,C, s t a t e p s i) ;
259 f o r j = 1 : n
260 p o s i t i o n e x p e c t a t i o n (j , k) = state mean (j , 1) ;
261 temp state = (X(j , :)−state mean (j , 1)) . ˆ 2 . * (abs (s t a t e p s i (j , :)) . ˆ 2) ;
262 var iance (j , k) = sum(temp state) *dx ;
263 end
264
265 p o t e n t i a l v a l = p o t e n t i a l ;
266
267
268 c l a r e s e t ;
269 ax = gca ;
270 hold on ;
271 f o r j = 1 : n
272 hold on ;
273 p l o t (X(j , :) , abs (s t a t e p s i (j , :)) . ˆ 2 , 'LineWidth' , 2) ;
274 temp t = k−1;
275 t i t l e (” t = ” + temp t)
276 hold on ;
277 end
278 legend (” dt = 0 .05” , ”dt = 0 .1” ,” dt = 0 .3” ,” dt = 0 .7” ,” dt = 1”)
279 ax . YLim = ([0 , 0 . 7]) ;
280 ax . XLim = ([−20 ,20]) ;
281 x l a b e l ('x')
282 y l a b e l (' | p s i (x) |ˆ2 ')
283 drawnow ;
284 myMovie (k) = getframe (gc f) ;
285
286 s t a t e p s i = So lve Schrod inger Eq (n , dx , dt ,X, s t a t e p s i , p o t e n t i a l v a l) ;
287 [s t a t e p s i , x i] = Pos i t ion Meas (n , dx ,X,C, xi , s t a t e p s i , sigma , k) ;
288 end
289
290 Replay Save Movie (myMovie)
291
292 f i g u r e ;
293 f o r j = 1 : n
294 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (j , :) , 'LineWidth' , 2)
295 x l a b e l (' t ')
296 y l a b e l ('Pos i t i on Expectat ion ')
297 hold on ;
298 end
299 legend (” dt = 0 .05” , ”dt = 0 .1” ,” dt = 0 .3” ,” dt = 0 .7” ,” dt = 1”)
300
301 f i g u r e ;
302 f o r j = 1 : n
303 p l o t (0 : t −1, var iance (j , :) , 'LineWidth' , 2)
304 x l a b e l (' t ')
305 y l a b e l (' var iance ')
306 hold on ;
307 end
308 legend (” dt = 0 .05” , ”dt = 0 .1” ,” dt = 0 .3” ,” dt = 0 .7” ,” dt = 1”)
309
310
311
312 %% −−−−−−−−−−−− Three State Simulat ion with Movie/ Pos i t i on Expectat ion / Variance (

Po t e n t i a l)−−−−−−−−−−−− %%

26

313 c l c ; c l e a r ;
314 format shor t
315 workspace ;
316
317 n = 3 ;
318 t = 200 ;
319 f r e q = 50 ;
320 dx = 1/ f r e q ;
321 X i n i t i a l = −40:dx:40−dx ;
322 C i n i t i a l = −40:dx:40−dx ;
323 N = length (X i n i t i a l) ;
324 sigma = 7 ;
325 dt = 0 . 1 ;
326 X = ze ro s (n ,N) ;
327 C = ze ro s (n ,N) ;
328 f o r j = 1 : n
329 X(j , :) = X i n i t i a l ;
330 C(j , :) = C i n i t i a l ;
331 end
332
333 b = 0 . 5 ;
334 a = 0 ;
335 i n i t i a l p s i 1 = exp(− X i n i t i a l . ˆ 2) ;
336 i n i t i a l p s i 2 = X i n i t i a l . ˆ 2 . * exp(− X i n i t i a l . ˆ 2) ;
337 i n i t i a l p s i 3 = (1/ p i) *(b . / ((X i n i t i a l −a) . ˆ2 + b . ˆ 2)) ;
338
339
340 V 0 = 2 ;
341 p o t e n t i a l = @(y) V 0 ;
342 p o t e n t i a l v a l = p o t e n t i a l (X i n i t i a l) ;
343 X indx = 10<=abs (X i n i t i a l) & abs (X i n i t i a l) <=12.5;
344 i n i t i a l p o t e n t i a l = p o t e n t i a l v a l .* X indx ;
345
346 s t a t e p s i = [i n i t i a l p s i 1 ; i n i t i a l p s i 2 ; i n i t i a l p s i 3] ;
347 x i = ze ro s (n , t) ;
348 var i ance = ze ro s (n , t) ;
349 p o s i t i o n e x p e c t a t i o n = ze ro s (n , t) ;
350
351 allTheFrames = c e l l (1 , t) ;
352 allTheColorMaps = c e l l (1 , t) ;
353 myMovie = s t r u c t (' cdata ' , allTheFrames , 'colormap ' , allTheColorMaps) ;
354
355 f o r k = 1 : t
356 f o r j = 1 : n
357 A = 1/ s q r t (sum(abs (s t a t e p s i (j , :)) . ˆ 2) *dx) ;
358 s t a t e p s i (j , :) = A* s t a t e p s i (j , :) ;
359 end
360
361 [s t a t e p s i ,X,C, state mean] = I n t e r v a l S h i f t (dx , n , X i n i t i a l ,X,C, s t a t e p s i) ;
362 f o r j = 1 : n
363 p o s i t i o n e x p e c t a t i o n (j , k) = state mean (j , 1) ;
364 temp state = (X(j , :)−state mean (j , 1)) . ˆ 2 . * (abs (s t a t e p s i (j , :)) . ˆ 2) ;
365 var iance (j , k) = sum(temp state) *dx ;
366 end
367
368 p o t e n t i a l v a l = p o t e n t i a l (X) ;

27

369 X indx = 10<=abs (X) & abs (X) <=12.5;
370 p o t e n t i a l v a l = p o t e n t i a l v a l .* X indx ;
371
372 c l a r e s e t ;
373 ax = gca ;
374 p l o t (X i n i t i a l , i n i t i a l p o t e n t i a l , 'Color ' , 'g')
375 hold on ;
376 p l o t (X(1 , :) , abs (s t a t e p s i (1 , :)) . ˆ 2 , 'LineWidth' , 2 , 'Color ' , 'b') ;
377 hold on ;
378 p l o t (X(2 , :) , abs (s t a t e p s i (2 , :)) . ˆ 2 , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
379 hold on ;
380 p l o t (X(3 , :) , abs (s t a t e p s i (3 , :)) . ˆ 2 , 'LineWidth' , 2 , 'Color ' , ' r ') ;
381 hold on ;
382 temp t = k−1;
383 t i t l e (” t = ” + temp t)
384 legend (”” ,” exp(−x ˆ2) ” ,” xˆ2exp(−x ˆ2) ” ,”(1/ p i) *(b /((x−a) ˆ2 + bˆ2)) ”)
385 ax . YLim = ([0 , 0 . 7]) ;
386 ax . XLim = ([−20 ,20]) ;
387 x l a b e l ('x')
388 y l a b e l (' | p s i (x) |ˆ2 ')
389 drawnow ;
390 myMovie (k) = getframe (gc f) ;
391
392 s t a t e p s i = So lve Schrod inger Eq (n , dx , dt ,X, s t a t e p s i , p o t e n t i a l v a l) ;
393 [s t a t e p s i , x i] = Pos i t ion Meas (n , dx ,X,C, xi , s t a t e p s i , sigma , k) ;
394 end
395
396 Replay Save Movie (myMovie)
397
398 f i g u r e ;
399 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (1 , :) , 'LineWidth' , 2 , 'Color ' , 'b') ;
400 hold on ;
401 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (2 , :) , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
402 hold on ;
403 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (3 , :) , 'LineWidth' , 2 , 'Color ' , ' r ') ;
404 x l a b e l (' t ')
405 y l a b e l ('Pos i t i on Expectat ion ')
406 ylim ([−20 ,20])
407 legend (” exp(−x ˆ2) ” ,” xˆ2exp(−x ˆ2) ” ,”(1/ p i) *(b /((x−a) ˆ2 + bˆ2)) ”)
408
409 f i g u r e ;
410 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (1 , :) , 'LineWidth' , 2 , 'Color ' , 'b') ;
411 hold on ;
412 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (2 , :) , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
413 hold on ;
414 p l o t (0 : t −1, p o s i t i o n e x p e c t a t i o n (3 , :) , 'LineWidth' , 2 , 'Color ' , ' r ') ;
415 x l a b e l (' t ')
416 y l a b e l ('Pos i t i on Expectat ion ')
417 legend (” exp(−x ˆ2) ” ,” xˆ2exp(−x ˆ2) ” ,”(1/ p i) *(b /((x−a) ˆ2 + bˆ2)) ”)
418
419 f i g u r e ;
420 p l o t (0 : t −1, var iance (1 , :) , 'LineWidth' , 2 , 'Color ' , 'b') ;
421 hold on ;
422 p l o t (0 : t −1, var iance (2 , :) , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
423 hold on ;
424 p l o t (0 : t −1, var iance (3 , :) , 'LineWidth' , 2 , 'Color ' , ' r ') ;

28

425 x l a b e l (' t ')
426 y l a b e l ('Variance ')
427 legend (” exp(−x ˆ2) ” ,” xˆ2exp(−x ˆ2) ” ,”(1/ p i) *(b /((x−a) ˆ2 + bˆ2)) ”)
428
429
430
431 %% −−−−−−−−−−−− S i n g l e State S imulat ion with Movie/ Pos i t i on Expectat ion / Variance

(Po t e n t i a l)−−−−−−−−−−−− %%
432 c l c ; c l e a r ;
433 format shor t
434 workspace ;
435
436 n = 1 ;
437 t = 200 ;
438 f r e q = 50 ;
439 dx = 1/ f r e q ;
440 X i n i t i a l = −40:dx:40−dx ;
441 C i n i t i a l = −40:dx:40−dx ;
442 N = length (X i n i t i a l) ;
443 dt = 0 . 1 ;
444 X = ze ro s (n ,N) ;
445 C = ze ro s (n ,N) ;
446 f o r j = 1 : n
447 X(j , :) = X i n i t i a l ;
448 C(j , :) = C i n i t i a l ;
449 end
450
451 i n i t i a l p s i 2 = X i n i t i a l . ˆ 2 . * exp(− X i n i t i a l . ˆ 2) ;
452
453 V 0 = 10 ;
454 p o t e n t i a l = @(y) V 0 ;
455 p o t e n t i a l v a l = p o t e n t i a l (X i n i t i a l) ;
456 X indx = 10<=abs (X i n i t i a l) & abs (X i n i t i a l) <=12.5;
457 i n i t i a l p o t e n t i a l = p o t e n t i a l v a l .* X indx ;
458
459 s t a t e p s i = i n i t i a l p s i 2 ;
460 x i = ze ro s (n , t) ;
461 var i ance = ze ro s (n , t) ;
462 p o s i t i o n e x p e c t a t i o n = ze ro s (n , t) ;
463
464 allTheFrames = c e l l (1 , t) ;
465 allTheColorMaps = c e l l (1 , t) ;
466 myMovie = s t r u c t (' cdata ' , allTheFrames , 'colormap ' , allTheColorMaps) ;
467
468 f o r k = 1 : t
469 f o r j = 1 : n
470 A = 1/ s q r t (sum(abs (s t a t e p s i (j , :)) . ˆ 2) *dx) ;
471 s t a t e p s i (j , :) = A* s t a t e p s i (j , :) ;
472 end
473
474 [s t a t e p s i ,X,C, state mean] = I n t e r v a l S h i f t (dx , n , X i n i t i a l ,X,C, s t a t e p s i) ;
475 f o r j = 1 : n
476 p o s i t i o n e x p e c t a t i o n (j , k) = state mean (j , 1) ;
477 temp state = (X(j , :)−state mean (j , 1)) . ˆ 2 . * (abs (s t a t e p s i (j , :)) . ˆ 2) ;
478 var iance (j , k) = sum(temp state) *dx ;
479 end

29

480
481 p o t e n t i a l v a l = p o t e n t i a l (X) ;
482 X indx = 10<=abs (X) & abs (X) <=12.5;
483 p o t e n t i a l v a l = p o t e n t i a l v a l .* X indx ;
484
485 c l a r e s e t ;
486 ax = gca ;
487 p l o t (X i n i t i a l , i n i t i a l p o t e n t i a l , 'Color ' , 'g')
488 hold on ;
489 p l o t (X(1 , :) , abs (s t a t e p s i (1 , :)) . ˆ 2 , 'LineWidth' , 2 , 'Color ' , '#7E2F8E') ;
490 temp t = k−1;
491 t i t l e (” t = ” + temp t)
492 legend (”” ,” exp(−x ˆ2) ”)
493 ax . YLim = ([0 , 0 . 7]) ;
494 ax . XLim = ([−20 ,20]) ;
495 x l a b e l ('x')
496 y l a b e l (' | p s i (x) |ˆ2 ')
497 drawnow ;
498 myMovie (k) = getframe (gc f) ;
499
500 s t a t e p s i = So lve Schrod inger Eq (n , dx , dt ,X, s t a t e p s i , p o t e n t i a l v a l) ;
501 end
502
503 Replay Save Movie (myMovie)

30

	Introduction
	Motivation
	Background: Quantum Postulates
	Postulate 1: State Space
	Postulate 2: Evolution
	Postulate 3: Quantum Measurements

	Aims and Expectations

	Methods
	Process of the Model
	Markov Process
	Numerical Solution and MATLAB Implementation
	Solving the Schrödinger Equation and the Implementation
	Measurement Implementation

	Results
	Conclusion
	Acknowledgement
	References
	Appendix
	A. Solving Schrödinger Equation Code
	B. Measurement Code
	C. Interval Shift Code
	D. Generation Code

