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Abstract

Error detection is necessary for any realistic model of computation. We can think of classical
error detection and correction as a sphere packing problem in a classical metric space, and we
present the analogous definition of quantum metric spaces for quantum error detection. Using this
definition, we can find quantum codes as subspaces of quantum metric spaces, and we can use
the KLV method to find subspaces that satisfy the error detection condition. Finally, we create a
quantum metric space of Lie type using irreducible representations of the Lie algebra sI(2, C), and
find distance three codes using an optimized version of the KLV method.
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CHAPTER 1

Introduction: Quantum Codes in Quantum Metric Spaces

Quantum error detection and correction are vital for quantum computing to work, since qubits
are vulnerable to decoherence. The problem of finding error detecting/correcting codes given a
finite number of bits can be recast as finding subsets of a finite metric space. Using Kuperberg
and Weaver’s [KW12] definition of a quantum metric space, quantum codes analogously arise
as subspaces. We are especially interested in quantum metric spaces of Lie type, which have
symmetry properties that make it easier to find large codes. We use the two-stage construction
proposed by Knill, Laflamme, and Viola [KLV00], which we call the KLV method, to construct
quantum codes. In previous work by Finkel [Fin22] and Shor [Sho22], they were able to optimize
the KLV construction for specific quantum metric spaces of Lie type with distance two. However,
distance two codes have limited utility since they are only able to detect errors, not correct them.
Therefore, we aim to optimize the KLV construction using similar techniques to create codes with
distance three.

1.1. Error Detection and Correction

Information is subject to noise that can corrupt data, so to account for this we need to encode our
data along with some form of redundancy. We call our initial string a word, and we call its encoded
form a codeword. Assuming we have a fixed number of bits or qubits to work with, the number
of codewords is the size of the code. The minimal number of errors to transform one codeword to
another is the minimum distance of the code, which we sometimes refer to simply as the distance
of the code. The 3-repetition code is a simple classical example to illustrate these ideas.

Example 1.1. Suppose we want to encode bit strings of length nine in such a way that we can
correct single bit-flip errors. To do this, we map 0 to 000 and 1 to 111. For instance, we can encode
the string 010 as 000111000. There are 23 binary strings of length three, so we can only make eight
codewords, and this is the size of our code (notice that this is much smaller than the original space
of 2° words of length nine). The distance of our code is three, since it takes three bit flip errors to
transform one codeword to another. We call each triple in our codeword a logical bit. Within one
logical bit, we can detect if one or two bit-flip errors occurred by checking if all of the bits in the
triple are the same. If we know that at most one bit-flip occurred within each triple, then we can
correct errors using majority vote (we flip the bit that does not agree with the other two). However,
this means that although we can detect two errors in the same triple, if we try to use this method to
correct two bit-flips we will change the string to the wrong codeword.

We next recall the definition of a (classical) metric space.



Definition 1.2 (Metric Space). Let S be a set, and let d : S X § — R be a function such that for
any x, y, z € S the following properties hold:

dx,y) =0 & x=y
d(x,y) =d(y,x)
d(x,z) <d(x,y)+d(y,2)

Then d is called a metric and (S, d) is called a metric space.

We can view the space of all words of length n as a metric space, where we have some notion
of the distance between two words. We define an error detecting/correcting code as a subset, and
define the minimum distance of the code to be the smallest distance between two points in our
subset using the given metric. The following example describes the usual metric space used for
classical error detection and correction.

Example 1.3 (Classical Hamming Space). Let the Hamming Distance dj between two words be
the number of bits that differ between them. For example,

5 (10000, 00101) = 3.

We can check that the Hamming distance is a valid metric by checking the conditions given in the
definition above. If x, y, and z are any bit strings of length n then the Hamming distance between
x and y is zero if and only if they are the same string, so

dp(x,y) =0 = x=y.

We also know that the number of bits that differ between x and y must be the same between y and
X SO

dh(x,)’) = dh(y’-x)'

If x and z differ by i bits, x and y differ by j bits, and y and z differ by k bits, then x and z cannot
differ by more than j + k bits so we have that

dp(x,2) < dp(x,y) +dp(y,2).

Therefore dj, is a metric. We call the space generated by this metric classical Hamming space.

Most classical codes arise as subsets of classical Hamming space, which allows us to think of
constructing error detecting and correcting codes as a sphere packing problem. This is because if
we have a fixed minimum distance d, maximizing the size of our code corresponds to choosing a
maximal subset of points at least distance d apart. If we create balls of radius d/2 around each
codeword, then this is the same as finding the optimal sphere packing in this metric space with
spheres of radius d/2. Once we find this maximal subset, we are able to detect up to d — 1 errors,
since those do not map sphere centers to other sphere centers. We can correct up to (d — 1) /2 errors
by assigning a corrupted word to the center of the sphere it lies in. Later, we provide the analogous
definition of quantum metric spaces, where quantum codes arise as subspaces.



1.2. Quantum Information Background

Error detection and correction are especially important for quantum computing, since interac-
tions with the environment introduce noise into a quantum system at much higher rates than for
classical computing. We next review some of the foundations of quantum information theory.
A qubit is the basic unit of information used in quantum computing, and it is the analogue of a
classical bit. If we have a one qubit system, we can represent the qubit’s state as a vector in C2, and
we utilize Dirac’s compact bra-ket notation as defined below.

Definition 1.4. (Bra-ket notation) We denote a vector v by |v), and call this a ker. We denote the
dual vector of v by (v| and call this a bra. Then the Hermitian inner product of two vectors |v) and
|w) is (w|v) (which is a bra-ket!).

Let [v) and [w) be an orthonormal basis of C2. Then if we have one qubit, we can use bra-ket
notation to represent its state |) by [¥) = a|v) + b|w) where a,b € C and |a|® + |b|*> = 1. We
call a and b quantum amplitudes. We identify states that differ by a global phase, meaning that
if 1) = alv) + blw) and |n) = e (alv) + b|lw)) where ¢/ € C, then |¢;) ~ |¥2). Notice,
however, that if two states differ by a relative phase, for example if |¢;) = a|v) + b|w) and
ly2) = a|v) +e'Pb|w) where e? # 1, then |y1) + [if2). Since the norms of the quantum amplitudes
add up to 1, this means that our state vectors are actually in 3, and when we quotient by the global
phase equivalence we get S/ (|) ~ ¢?|y)) = S%. This means that we can plot the state of a single
qubit on a real unit sphere which we call the Bloch sphere. In general, if we have an n-qubit system,
then the state space is C2 ® C? ® - - - ® C? = (C?)®", where ® is the tensor product.

Below, we define the Pauli matrices, which are used throughout the quantum error correction
literature. We will reference these matrices again in Section 1.5.

Definition 1.5. (Pauli Matrices)

These matrices are important because they are each conceptually equivalent to a bit flip error,
just in different bases. Additionally, these matrices, together with the identity error /, span the
entire error space for one qubit. Below, we illustrate the effect of these operators in the |0), |1)
basis, where |¢) = a|0) + b|1).

Xly) =all)+b|0)  Zly)=al0)-bl1)  Y|y)=iall) - ib|0)
Notice that we can write Y /) = a|l) — b|0), by the global phase equivalence of states. Thus, in

this basis, X corresponds to a bit flip error, Z corresponds to a phase flip error, and Y corresponds
to a bit and phase flip error.



1.3. Review of Relevant Lie Theory

We next review some Lie theory that will allow us to later define quantum metric spaces of Lie
type. We begin with the definitions of a Lie group and a Lie algebra, taken from Hall’s book on
the topic [Hall5].

Definition 1.6 (Lie Group). A Lie group is a smooth manifold that is also a group, such that the
group operation G X G — G and the inverse map G — G are smooth.

Some specific Lie groups we are interested in are the general linear group GL(d, C), the special
linear group SL(d, C), the unitary group U(d), and the special unitary group SU(d). GL(d,C)
consists of all of the d X d invertible complex matrices, and the subgroup of GL(d,C) with
determinant 1 is SL(d, C). Recall that a complex matrix is unitary if its columns are orthonormal.
Then the group of d X d complex unitary matrices is another Lie group, and is called U(d). The
subgroup of U(d) of matrices with determinant 1 is SU(d).

Definition 1.7 (Lie Algebra). A finite real (or complex) Lie algebra is a finite dimensional real (or
complex) vector space g with a map [, -] called the Lie bracket, such that the following properties
hold:

(1) [-,-] is bilinear
Q) [X,Y]=-[Y,X]forall X,Y €g
B [X,[Y,Z]]+[Y,[Z,X]]|+ [Z,[X,Y]] =0forall X,Y,Z € g

Although these definitions look dissimilar, every Lie group has a corresponding Lie algebra,
which is the tangent space of the Lie group at the identity. In general, it is easier to work with the
Lie algebra of a Lie group than with the group itself, due to the Lie algebra’s linear structure. We
are mainly concerned with matrix Lie groups and algebras, which we define below.

Definition 1.8 (Matrix Lie Group). A matrix Lie group is a subgroup G of GL(d, C), such that

for any sequence of matrices A,, in G that converge to some matrix A, we have that A € G or
A ¢ GL(d,C).

In fact, all of the Lie groups discussed above are matrix Lie groups! Next, we give the following
definition for the Lie algebra of a matrix Lie group.

Definition 1.9 (Lie Algebra of a Matrix Lie Group). Let G be a matrix Lie group. Then the Lie
algebra of G, which we call g, is the set of all matrices X such that e'X isin G for all t € R, where
e'X is the matrix exponential of X.

This definition implies that the Lie algebra of GL(d, C), which we call gl(d,C), is all d x d
complex matrices. This is because for any X € M(d,C), the matrix exponential ¢’X has inverse
e X since e'Xe™X = €% = I s0 ¢’ € GL(d,C). Next, we want to show that sI(d,C), the Lie



algebra of SL(d, C), is all d X d complex matrices X such that tr(X) = 0. To do this, we first need
the following proposition.

Proposition 1.10. For any matrix X € M (d, C) we have that det(eX) = ¢"X),

Proor. Suppose that X is diagonalizable with diagonal entries A1, A7, ..., 44. Then this implies
that e¥ is also diagonalizable with diagonal entries e, e!2, ..., ¢!, Since X is diagonal, we know
the determinant of eX is the product of its diagonal entries, so

d 1.
det(eX) = et ... et = p2inrhi,

We recognize that Zflzl A; = tr(X) and therefore det(eX) = "X, If X is not diagonalizable, we
can represent it as the limit of a sequence of diagonal matrices, and since the property holds for
each of the diagonal matrices, it must also hold for X. m]

This proposition implies that for any ¢ € R, det(e'X) = "X If tr(X) = 0 then
etr(rX) — eO -1

so e’X € SL(d, C). We also know that if ¢’ € SL(d, C) for every real ¢, then
det(e’®) = 1 = ™00,

Since the trace is linear, tr(¢X) = ¢ - tr(X). We can take the derivative of ¢"X) = 1 with respect to
t to get
tr(X) - "X =,

Since " X) % 0, we must have that tr(X) = 0. Therefore, the matrices X € sl(d, C) are exactly
the complex d X d matrices such that tr(X) = 0.

Next, we are interested in the Lie algebras of U(d) and SU(d). We first show that the Lie algebra
of U(d), denoted u(d), is all complex matrices X such that X* = —X. If we know that X* = —X,
then this implies that for any # € R we have that

(etX)* — etX* — e—tX — (etX)—l

s0 ¢'X is unitary'. Combining our reasoning for sI(d, C) and u(d) we get that su(d) is composed

of all complex matrices X such that X* = —X and tr(X) = 0.

Another construction that is relevant is the complexification of a real Lie algebra. We recall the
definition of the complexification of a real vector space, and then extend this construction to Lie
groups and algebras.

Definition 1.11 (Complexification of a Real Vector Space). If V is a real vector space, then the
complexification of V, denoted V¢, is the direct sum V @ iV. This means that V¢ is the vector space
of formal linear combinations

Vi +ivy
where v, v € V. In order to make this a complex vector space, we define i(v| +ivy) = —vy +ivy.
IThe “*” here denotes the conjugate transpose of the matrix, which is also known as the Hermitian transpose. In the

physics and QCQI literature, the dagger “f” is used in place of the star, but I have decided to use the star notation to
match the later use of =-algebras.



Proposition 1.12. Let g be a real Lie algebra, where gc is its complexification as a real vector
space. Then there is a unique way to extend the Lie bracket such that g¢ is a complex Lie algebra,
and we call g¢ the complexification of g. Suppose that g C gl(d, C) and that for all nonzero X € g
we have that iX ¢ g. Then the complexification of g is isomorphic to the subset of d X d complex
matrices that can be expressed as X +iY where X,Y € g.

Using the above proposition and definitions, we can find the complexifications of u(d) and
su(d). We know that if X € u(d), then X* = —X. This implies that (iX)* = iX # —iX, so
iX ¢ u(d) when X # 0. Now suppose that X is any complex d X d matrix. Then we can write

X-X* X+ X"
X = +1 - .

Since

X-x\" x-Xx (X-X*
2 -2 2
and

X+X\" X'+X [(X+X'

2i =2 2i

we have that
X-X" X+X*
272

By the above proposition, this implies that u(d)c = gl(d, C).

Next, we want to find the complexification of su(d). If X € su(d), we know that X* = —X and
tr(X) = 0. By similar reasoning as above, we can write any traceless matrix X as

X-X"\ (X+X*
X = +1 -
=5

X-X" X+X*
2 720
This is because if X has trace zero, then so does X*, so X — (X*) and X + X* both have trace zero.
Therefore, by the above proposition, su(d)c = sl(d,C). This is important for us, since we can
consider every representation of su(d)c as a representation of sl(d, C).

Next, we discuss some relevant representation theory, specifically focusing on the irreducible
representations of sI(2,C). A (finite-dimensional) representation of a group G is a group homo-
morphism p : G — GL(V) for some vector space V, or equivalently, it is the group action of G
on V, written G O V. We next define Lie algebra homomorphisms so that we can provide an
analogous definition for a representation of a Lie algebra.

e u(d).

where

€ su(d).

Definition 1.13 (Lie Algebra Homomorphism). If g and § are two Lie algebras, then a linear map
¢ : g — bis called a Lie algebra homomorphism if it preserves the Lie bracket, that is, if

([X,Y]) = [¢(X), #(Y)]
forall X,Y € g.



A finite-dimensional complex representation of a Lie algebra g is a Lie algebra homomorphism
p g — gl(V), where V is a finite-dimensional complex vector space. Now let p be a finite-
dimensional complex representation of g acting on a vector space V. If p fixes a subspace W C V,
that is, p(X)w € W for all w € W and for all X € g, then W is called an invariant subspace under
p. We say that W is a nontrivial invariant subspace if W # V and W # {0}. A representation p
that has no nontrivial invariant subspaces is called irreducible. Similarly to how the Lie bracket
extends uniquely to the complexification of a matrix Lie group, we have the following proposition
for the extension of a representation of g to its complexification.

Proposition 1.14. Let g be a real Lie algebra and let gc be its complexification. Then every
finite dimensional complex representation p of g can be uniquely extended to a complex-linear
representation of gc, which we also call p. Furthermore, p is an irreducible representation of gc if
and only if it is also irreducible as a representation of g.

We next present a family of irreducible representations of sI(2, C) and a theorem which states
that these in fact describe all of the irreducible representations up to isomorphism.

Example 1.15 (sI(2, C) Acting on a Vector Space of Homogeneous Polynomials). We begin with
the following basis of s1(2,C):

0 1 00 1 O
e=loo] relio] el
with commutation relations

[HE|=2E [H,F]=-2F |[E,F]=H.

Then let p : s[(2,C) — gI(C[x, y],) be an n + 1 dimensional representation, where C[x, y],, is the

vector space of homogeneous polynomials of degree n in x and y. Define p such that:
0 0 0 0
E)=y— F)=x— H=v— —x—.
p(E) Yo p(F) 3y p(H) Yoy " ax

We first check that this is a representation. We have that p[H, E] = 2yaa—x and

o). p (BN = [y =35y 2
o  a\( o o\( o 8
= bag w3 i)~ bae) by =3
. ik - xy ik -y i +y£+xya—2
o0x oxy oxy oxy = Ox oxy
9



We can check the other two commutation relations using similar calculations. Since p preserves
the Lie bracket, it is a representation. We next analyze the effect of these operators on the basis
elements of C[x, y],,. We have that

P(E) (X" *y%) = (n = k)xk=1yk+1
P(F) (" yk) = (f)a=k+1 k=1
and
p(H)(x"*y*) = ()x"*y* = (n = k)x"*y*
= (2k — n)x"kyk.
Figure 1.1 shows the effects of p(E), p(F), and p(H) on the basis elements of C[x, y]s.

-6 —4 -2 0 2 4 6 -
6 5 4 3 2 1 p(E
Q’/_Sl (l i Q — Q — Q 3 (1 - (l ) (F)
x6 xSy x4y2 x3y3 X2y4 Xl y5 y6 £
e — X’ — K — — p(H)

1 2 3 4 5 6

Ficure 1.1. Weight diagram of p when n = 6. The arrows are labeled with the coefficient
the basis vector picks up from the operation.

We define a weight of an element x" %y to be the eigenvalue A of p(H), i.e.

p(H)(x"*y*) = a(x"*yh).

Then x"Ky* is the corresponding weight vector. For a given weight A, its weight space is the
subspace of V spanned by A’s weight vectors. We can plot each weight space labeled with its
corresponding weight to create a weight diagram for our representation p. For example, if we have
n = 6, then the weight diagram for p would look like the following:

-6 -4 -2 0 2 4 6

Proposition 1.16. For every n > 1, the representation p of sI(2, C) given above is irreducible.

Proor. Let W C C|x, y],, be a nonzero invariant subspace under p, which means that p(X)w €
W for all w € W and for all X € sI(2,C). Let

w=cox" + X ly + ey ey

be a nonzero element of W, and let ¢;x"" yi be the nonzero term of w such that i is smallest. Then
if we repeatedly apply p(E) to w, eventually all of the other terms of w get sent to 0. Specifically,
we have that

p(E)""'w = a(c;y")



for some coefficient a. Since W is invariant under p(E), we know that a(c¢;y") € W, so y" € W.
Then we can repeatedly apply p(F) to y" to get every other basis element of C[x, y],. Since W
contains all of the basis elements of C[x, y],, we must have W = C|[x, y],. Therefore there are no
nontrivial invariant subspaces of C[x, y], under p, so p is irreducible. |

Lastly, we provide a theorem which states that in fact, every (n+ 1) —dimensional irreducible rep-
resentation of sI(2, C) is isomorphic to the (n + 1)—dimensional representation C|x, y], described
above.

Theorem 1.17. For every integer n > 0, there is an irreducible representation of s[(2,C) of
dimension n + 1, and all irreducible representations of sI(2, C) of the same dimension are isomor-
phic. If ¢ is an irreducible representation of sI(2, C) of dimension # + 1, then it is isomorphic to
o :sl(2,C) — Clx, y],, the (n + 1)—dimensional representation described above.

1.4. Quantum Metric Spaces

In this section, we state the definition of a quantum metric due to Kuperberg and Weaver [KW12].
Let the Hilbert space H be the state space of our system. Note that Hilbert spaces are necessary to
define quantum metrics in the infinite dimensional case, but since the only Hilbert spaces we will
need will be finite-dimensional, we can just think of the state space as C" for some N € N. The use
of Hilbert spaces even in the finite-dimensional case is common in the QCQI literature. Then the
linear operators on the state space L(H) form the error space of our system. Recall the definition
of an algebra [Gol95].

Definition 1.18 (Algebra). An algebra A is a vector space over a field F' along with a bilinear
multiplication operation A X A — A such that the following properties hold:
u(v+w)=uv+uw
(u+v)w =uw+vw
c(vw) =v(ew) = (cv)w

forall u,v,w € Aandc € F.

L(H) is an algebra, in fact it is a x-algebra. This means that £(7#) has a unary operator * that
is an involution, is conjugate linear, and is an anti-homomorphism. We also have the property that
for A € L(H), A*A = 0 implies that A = 0. Now we are ready to define a quantum metric space,
as given by Kuperberg and Weaver [KW12] 2.

Definition 1.19 (Quantum Metric Space). A quantum metric on A C L(H) is a x- algebra filtration
of £(#). This means that the following properties hold:

VYV, cVifs<t
2Conditions (3) and (4) in the definition of a quantum metric space are written in set arithmetic style, where we write

V; as shorthand for “for every element V in V;.” We use this shorthand in various places in the text, but it is especially
useful in sections 1.6 and 2.2.



(2) Vo = span{/}
Q) V=V
4 ViVi € Vi

A along with its quantum metric form a quantum metric space.

Since in this context we are only considering the case where H is finite-dimensional, we can
consider integer values of # and think of {);} as a nested sequence Vy € V; C --- C V), as explained
by Shor [Sho22].

Since the definition of a quantum metric space is very general, we are interested in working with
quantum metrics with some additional structure. We next define a quantum graph metric, and then
define quantum metric spaces of Lie type.

Definition 1.20 (Quantum Graph Metric). Define the edge space £ to be a subspace of L(7) such
that £ = £* and £ 2 span{/}. Then the corresponding quantum graph metric is a quantum metric
with filtration {);} such that:
MV =£
(2) V,=span{€---& - &}
~————

t times

When discussing quantum graph metrics, we use the terms “error space” and “edge space”
interchangeably. We say that a quantum graph metric {V;} is of Lie type if £ = L & )y where L is
a self-adjoint traceless Lie algebra.

1.5. Example: Quantum Hamming Space

Building on our earlier example of classical Hamming space, we now present the analogous
quantum metric space of Lie type called quantum Hamming space. Let H = (C?)®", that is, H is
the state space for n qubits. Then to create a quantum metric of Lie type, we define our Lie algebra
to be

L=sl2,C)®---osl(2,C) &sl(2,C)

n times

and & = L & span{/}. Note that the Pauli matrices, given in Definition 1.5, form another basis of
s[(2,C). In addition, the matrices X, Y, Z, and I form a basis for g[(2,C) = M(2,C).
Therefore, we can write:

E=span{A] ® A, ®---® A, | at most t of the A;’s € {X,Y, Z} and the rest are /}.

1.6. Quantum Error Detection

We can view quantum codes as subspaces of quantum metric spaces, by analogy with the
classical case. We next want to know when we are able to detect an error E. Recall that a projection
operator P is a self-adjoint idempotent operator, meaning P = P> = P*. Then for a quantum code
C, the orthogonal projection P¢ projects states |¢) onto the subspace C, that is, P¢|y) € C.

10



We have the following definitions of the error detection condition, the minimum distance, and
the slope of a quantum code from Okada [Oka23]. We then provide a useful proposition for an
equivalent formulation of the error detection condition, also from Okada. Lastly, we present a
proposition that will be useful when constructing codes using the KLV method.

Definition 1.21 (Error Detection Condition). Let C be a quantum code with orthogonal projection
Pc. C detects the error E € L(H) if there exists e(E) € C such that PcEP¢ = €(E)Pe.

Intuitively, this is saying that if for all [¢/) € C we have
Ely) = rely) o ely) = )

(the last equality holds since a state’s global phase doesn’t matter), then £ wasn’t really an error
since it takes codewords to states proportional to their original state. If E|y) = re'®|y), then there
is a linear functional € such that e(E) = re'?. On the other hand, if we have E such that E|y) ¢ C
for all ) € C, then PcEP¢|¢) = 0 and then €(E) = 0. Therefore, if this linear functional € exists
such that PcEP¢ = €(E)P¢, then we can detect whether E was a logical error or not.

Definition 1.22 (Slope of a Quantum Code). Let C be a quantum code of distance d > 1. The
linear functional € : £;,_1 — C is called the slope of C.

Definition 1.23 (Minimum Distance of a Quantum Code). Let C be a quantum code. The minimum
distance (or just the distance) of C is the largest d such that C detects all errors in £;_;.

Proposition 1.24. LetC be a quantum code and let E be an error. Then the following two conditions
are equivalent:
(1) C detects E
(2) For some orthonormal basis {|¢;}
€(E)o;j foralli, j € {1...dim(C)}

dim(C)

.1 - there is an €(E) € C such that (J;|E|y;) =

The next proposition will be particularly useful for the next section.

Proposition 1.25. Let C be a subspace of a Hilbert space H with error space £, and let B be a
subspace of H such that C C B C H. In set arithmetic, if C detects Pg€ P, then C detects &.

Proor. Since C C B, we know that PgPc = PcPp = Pc. If C detects Pg€Pp, then there
exists a linear functional € such that Pc PE PP = €(£)Pc, which means that PcEP¢e = €(E)Pe.
Therefore C detects £. O

In the next chapter, we discuss the KLV method for constructing quantum error detecting codes
in quantum graph metric spaces, and how we can improve the KLV method to create a distance 3
code in a specific quantum metric of Lie type.
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CHAPTER 2

KLV Method for Constructing Codes

2.1. Constructing Codes in Quantum Graph Metric Spaces

Knill, Laflamme, and Viola provide a general method to construct quantum codes in quantum
graph metric spaces [KLVO00]. This is a two stage construction, where we first create an intermediate
code that detects some of the errors in the error space, and then find a subspace of this code to
detect all of the errors in the error space. This is a type of concatenated code, meaning we construct
our code by finding a subspace of an intermediate code (similar to Peter Shor’s 9-qubit code).

2.1.1. First Stage of the KLV Method. Let H be the n-dimensional state space of our quantum
system, and let £ be our error space with some basis Ey, E», ..., Egims). Let d be the desired
minimum distance for our code. We want to find a set of orthonormal states that form a basis for
a subspace B, such that (;|E|y ;) = €(£)0;; for all i, j € {1,...,dim(B)}. Then let [¢;) be any
normalized state in H. Choose |y2) (normalized) such that [¢,) is orthogonal to |y ), that is
lW2) € (E|w1))*, which we can find if dim(&) < n. If we were able to find such a state, then make
it a basis vector for B. Then we can try to find a normalized state |¢3) € (E|Y1))t N (ElYa))*,
and can continue this process in this way until we can’t add any more states. This results in an
orthonormal basis for B, and the remaining error space after we project to B is £g = PpEPp.
The elements of P& Py are diagonal by construction, and are therefore commutative. Using this
greedy construction, we get the following lower bound for the dimension of B:

dim(B) > {dim(%)w.

dim()

2.1.2. Second Stage of the KLV Method. Next, we want to find a subspace of 5 that detects
&n, and we do so using Tverberg’s theorem.

Theorem 2.1 (Tverberg’s Theorem). Suppose we have n points in R¢ such thatn > (d+1)(r—1)+1
for some r. Then there exists a partition of the points into r parts such that the intersection of the
convex hulls of the parts is nonempty.

The convex hull of a set of points is the smallest convex set containing all of the points. Intuitively,
we can think about the convex hull in 2D space as the region obtained by stretching a rubber band
around the set of points. Figure 2.1 shows an example of a Tverberg partition of ten points. Next,
we use this theorem to partition the elements of 3, such that the convex hull of the parts is the slope
of the code.

12



P2

P7 Pe6
P4
P3

P38

P9
P1o Ps P1

Ficure 2.1. An example of a Tverberg partition of 10 points.

The details of the second stage of KLV were described by Bumgardner [Bum03], and we pull
from these details in the following explanation. Since all of the errors in £ commute, this means
that they are jointly diagonalizable, so we can choose a basis [y/1), [¥2), ..., |x) for B such that
all of the errors in £p are diagonal. Let Ey, ..., E,, be a basis for £g. Then since each E; € £ is
diagonal in this basis of B, we have that there exist eigenvalues A;; such that

Elyi) = A ili)

for 1 <i < k, and for all E; € £g. The eigenvalue A;; is simply the ith diagonal entry of E;.

Next, we want to construct states |v) such that their span satisfies the error detection condition.
To do this, we first apply Tverberg’s theorem to partition the indices of [/1), [¥2), ..., [¥«) such that
the convex hulls of the parts intersect at a point € = (ey, ..., ¢;). Notice that this is equivalent to
partitioning the set of k eigenvalues {1; , } for a given E;. Then for each of the parts X;, define |v)
to be the normalized linear combination of the states |i/,,) in the part X; such that

viy= D Bilwp) D BipPup=a D 1Bl =1

pEXj pEXj pEXj

for some coeflicients §;,. We know that we can find these coeflicients because € can be written as
a convex combination of the 4; ,,’s.

Proposition 2.2. The span of the |v;) states forms a code C such that C detects Eg.

Proor. To prove this, we need to check that (v;|E;|v;) = ¢ and that {v;|E;|v;) = 0 wheni # j,
since this is equivalent to the second error detection condition given in Proposition 1.24. We first
check that (v;|E;|v;) = €:

13



WilENv) = (O BinWoDE( Biplwp)) = (O Bipwp) (' BipEilwp))

pEXj pGX]' pEXj [JEX]'

= () BinWpD (O Biniplo)) = (D0 " BipBipsdips Wi ¥p:))
DEX; PEX; P1€X; p2€X;

= > Bl =a
pEXj

We can do a similar calculation to show that (v;|E;|v;) = 0 when i # j, since in the third to last
step the inner product will be 0 always since the partitions are disjoint. Therefore, C detects £g and
we are done. m|

Then this implies that

‘ 1 dim(H)
dim(C) > dim(€) + 1 {dim(g) }

2.2. Distance 3 KLV Construction for s[(2, C)

In previous work by Finkel [Fin22] and Shor [Sho22], they constructed quantum metric spaces
of Lie type using the real Lie algebras su(2) and su(3). Since these Lie algebras act on a complex
vector space, we can examine the natural action of their complexifications sI(2,C) and s[(3, C)
on the Hilbert space. These Lie algebras are convenient for us because they have infinitely many
irreducible representations that are also multiplicity-free, which makes optimizing the KLV method
using the Lie algebra weight diagram more straightforward. Finkel and Shor found larger codes
using an optimized form of the KLV method for distance d = 2. However, this distance is too
small to correct errors. Therefore, we are interested in creating distance-three codes using a similar
optimization.

Bumgardner analyzed the sl(2, C) case for arbitrary distances and optimized the first stage of
the KLV construction, but he did not optimize the second stage [Bum03]. Optimizing the second
stage for distance two is easier than for higher distances, since in the distance two case the sI(2, C)
and sI(3,C) weight diagrams match the weight diagram for £g°. As a result, Finkel and Shor
optimized the second stage of the KLV method directly using Lie algebra weight diagrams. We will
see that the weight diagram of sI(2, C) does not match the weight diagram of £3 in the distance 3
case, but that the weight diagram of &g still has some special structure that we can use to improve
the second stage. We provide an analysis for distance three codes in the quantum metric space of
Lie type constructed using sI(2, C) below.

Let H be an (n + 1)-dimensional Hilbert space, and let £, be the error space of distance three
errors. Let p : s[(2,C) — H be an irreducible representation of sl(2, C), which by Theorem 1.17
is isomorphic to the polynomial representation p : sl(2,C) — C|x, y],. In this case, we have that

& = span{l, p(E), p(F), p(H)}.

3Note that the term “weight diagram” is most commonly used for weight diagrams of representations of semisimple
Lie algebras. In this context, we use the term “weight diagram” to also mean the plot of the joint eigenvalues of the
commutative errors in 3.
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As in Example 1.15, we can make a weight diagram for p and we can choose a subset of the
weight spaces such that they are three error applications apart. For example, if n = 6 we can choose
the following subset (indicated with red circles).

-6 -4 -2 0 2 4 6

We next calculate the dimension of &, in the distance three case. Then we discuss the lower
bounds that the general KLV method guarantees, and how we can improve this by optimizing the
first stage. Finally, we discuss what it means to optimize the second stage, and give an example of
this in the next section.

2.2.1. Finding the Dimension of &. Distance three means that we want to be able to detect
all errors in

& =span{l, p(E), p(F), p(H), p(E*), p(EF), p(EH), p(F?), p(FE), p(FH), p(H?),
p(HE),p(HF)}

However, some of the terms in this span are redundant. Using the commutation relations between
E,F, and H we can write p(FE), p(HE), and p(HF) as linear combinations of other elements
already in the span:

[E,F]=EF-FE=H = p(FE) = p(EF) - p(H)
[H,E] = HE — EH =2E = p(HE) = p(2E) + p(EH)
[H,F| = HF - FH = -2F = p(HF) = p(FH) - p(2F).

Therefore, we have:

& =span{l, p(E), p(F), p(H), p(E*), p(EF), p(EH), p(F?), p(FH), p(H?)}

Since C[x, y], is an irreducible representation, we can observe that
p(EF)x"*yF = (n = k+ 1) (k)x"*y*
and
1 1 1 1
——p(HH)x" "3k + Zp(H)xX"*y* + =n® + Zn = (n — k + 1) (k)x"*yk,
4 2 4 2
SO
1 s 1 1, 1
EF)=——p(H")+ zp(H)+-n"+ =n.
P(EF) = —2p(H") + 5p(H) + 7n" + 5n
Therefore, p(EF) is already included in the span of the other elements. Then we can write:

& = span{l, p(E), p(F), p(H), p(E*), p(EH), p(F?), p(FH), p(H?)}.
We next prove that these elements form a basis for £, by showing that they are linearly independent.

Proposition 2.3. The elements listed in the span above are linearly independent when n > 2.
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Proor. We can write each of the elements in the basis of monomials of degree n, ordered by
decreasing powers of x and increasing powers of y. For example, if n = 3, then we would have the
monomial basis x3, x%y, xy2, y>. Then each of the elements in the span above has a matrix form
in this basis, where I, p(H), and p(H?) have nonzero elements on the diagonal, p(E) and p(EH)
have nonzero elements just below the diagonal, p(F) and p(F H) have nonzero entries just above
the diagonal, p (E?) has nonzero entries just below where p(E) does, and p (F?) has nonzero entries
just above where p(F) does. This means we can group the matrices into five groups where each
group has disjoint support from the others. Therefore, we just need to show linear independence
within each group. We can view the diagonal entries of p(H?) as a function of the diagonal entries
of p(H), such that

p(H?)ii = p(H)}.

We know that the monomials 1, A, and A? are linearly independent as functions when evaluated
on 3 or more points. When n > 2 we evaluate the function f(1) = 1> where 1 = p(H);; to get
the n + 1 diagonal entries of p(H?). We need the condition n > 2, since when n = 1 there are
only two diagonal entries and p(H?) = I. Therefore, p(H?) is linearly independent from 7 and
p(H), since A2 is linearly independent from the functions 1, 1 (which correspond to I and p(H)
respectively) when evaluated on n + 1 points. This argument also implies that / and p(H) are
linearly independent when 7 is at least 1.
We know that the entries of p(EH) are given by

P(EH)i1i = p(E)is1,i - p(H)i.

The nonzero elements of p(EH) are the nonzero elements of p(E) times a factor of A from the
entries of p(H). Since we know that A is linearly independent with 1 when n > 2, p(EH)’s
entries are not scalar multiples of the entries of p(FE), and therefore p(EH) and p(E) are linearly
independent. Similarly, p(F) and p(FH) are linearly independent when n > 2. We know p(E?)
and p(F?) are linearly independent from the rest since they have different support from all the other
matrices. Therefore, I, p(E), p(F), p(H), p(E?), p(EH), p(F?), p(FH), and p(H?) are linearly

independent when n > 2. O

2.2.2. KLV Lower Bounds. Now that we know that dim(&;) = 9, we can use this to state
the general KLV bound for the distance three sI(2,C) case. We know that our Hilbert space has
dimension n + 1, so our intermediate code B has dimension at least

n+1}

dim(B) > {

Likewise, the final code C has dimension at least

. 1
dll’l’l(C) > E

n+1
9

2.2.3. Optimizing Stage 1. We can choose the optimal intermediate code B by including every
third point on the Lie algebra weight diagram. This gives us an intermediate code of size

o[z
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Observe that this is an improvement over the KLV bound of [(n + 1)/9] when n > 3. Now we
want to find what the commutative error space £z is after choosing our intermediate subspace B.
We know that for any basis vector b € B, p(E), p(F), p(E?), p(EH), p(F?), and p(FH) map b
to a basis vector not in 3, so for every one of these errors E we have PgE Pp = 0. Thus, we have
that:

Ep = span{l, p(H), p(H*)}
Then going back to our example where n = 6, the weight diagram of £ looks like the parabola
shown in Figure 2.2, where we plot the weight spaces (in this case these are the same as the
eigenspaces) of p(H) on the x-axis and the weight spaces of p(H?) on the y-axis.

Ap(m2)

(—6,36) (6,36)

Ap(H)

(0,0)
FiGURE 2.2. Plot of the weights of p(H) and p(H?) in the example n = 6.
We can partition these points using Tverberg’s theorem to get

-

part. If we use Tverberg’s theorem to find our partition in the second stage, we are guaranteed to

get
p—1
3

2.2.4. Optimizing Stage 2. Finkel and Shor were able to find partitions with more than
L(p/3)]+1 parts, thereby creating larger codes. They did this by finding super-Tverberg partitions,
which we define below.

+1

parts (where p is as defined above).

Definition 2.4 (Super-Tverberg partition). A partition of p points in R¢ with
p—1

— | +1

d+1 |
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parts such that the intersection of the convex hulls of the parts is nonempty, is called a super-
Tverberg partition. A point in the intersection of the convex hulls of a super-Tverberg partition is
called a super-Tverberg point.

Since Tverberg’s theorem is optimal for any set of coincidence-free points, we must have some
type of coincidence to find super-Tverberg points. In our case, we can use the fact that our points lie
on a parabola as well as the integer lattice to find super-Tverberg points. The next section describes
the smallest value of n where we can get a super-Tverberg point.

2.3. Finding a Super-Tverberg Point for n = 24

Let ‘H be a 25-dimensional Hilbert space. Then we can make the following weight diagram
for p : sl(2,C) — C|x, y]24 and choose our intermediate subspace B as indicated by the red circles.

D e e (e o (e o (e o
0

-24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -

OO RO N0
6

8 10 12 14 16 18 20 22 24

Observe that when 7 is even, if we rescale the axes when plotting the weight diagram of &g
so that the x—values of the points are consecutive, we will construct the same partition as in the
original parabola. When 7 is odd, we get a weight diagram of the form ...-5, -3, -1, 1, 3, 5, ...
This means that we can still plot the points using consecutive integer x-values, but one side of the
parabola will have one more point on it than the other. We achieve this by shifting all of the weights
by one, and then performing a vertical shear transformation to move the bottom of the parabola to
the new 0 weight. We have not yet explored the impact this slight asymmetry will have on forming
super-Tverberg partitions, instead focusing on the even case. Figure 2.3 shows a rescaled weight
diagram of £g when n = 24.

(—4,16) (4, 16)
(-3.9) (3,9)
(-2,4) (2.4)
(=1,1) (1.1)

(0,0)

Ficure 2.3. Plot of the weights rescaled to have consecutive x-values when n = 24.
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Then we can make the partition shown in Figure 2.4, with the parts indicated by color.

FiGure 2.4. Super-Tverberg partition of the points in Figure 2.3.

This partition has 4 parts, which is more than [(p — 1)/3)] +1 = [8/3] + 1 = 3 parts, so €
indicated above is a super-Tverberg point. This results in a final code of size four, where the KLV
lower bound is (1/10)[25/9] = 3/10 parts. We can show that this is the smallest value of n where
we get a super-Tverberg point, when partitioning consecutive integer points on a parabola, using
a bottom-up approach. We know that if we only have one, two, three, four, or five points on the
parabola then there is a unique way to make the Tverberg partition with | (p — 1)/3] + 1 parts (a
point, one segment, one triangle, two segments, and one triangle and one segment respectively). If
we have six points, then we could either have three intersecting segments or two triangles. To know
when we are able to get more than two intersecting segments, we use the following proposition.

Proposition 2.5. Suppose that two segments that connect points on the parabola f(x) = x? intersect
on the y-axis at a point. Necessarily, the segments connect (a, a?) to (=b, b?) and (—a,a?) to
(b, b?). Then another segment that connects (c, c?) to (—d, d?) intersects both of the first two on
the y-axis when ab = cd.

Thus, we can find numbers with multiple distinct factorizations in order to create many in-
tersecting segments. Note that the proposition only describes when we get many intersecting
segments on the y—axis. This works in general, since if we look for segments intersecting off
the y-axis, we can first transform the parabola by a vertical shear map to make the intersection
point on the new y-axis of the parabola. This proposition implies that in order to get three inter-
secting segments connecting six integer points on the parabola, we would need to find three pairs
of integers (a;, b;) € {£1,+2,+3} such that a1b; = a,by = azbsz. However, there is no way to
assign ay, by, as, b», a3, bz to make this true. Therefore, the only Tverberg partition we can make
uses two triangles, which is the same as | (6 — 1)/3] + 1 = 2. For seven points on the parabola,
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the best Tverberg partition we can make uses one triangle and two segments, which is also not
an improvement. Lastly, if we have eight consecutive points on the parabola, then we could have
four intersecting segments or two triangles and a segment. However if we have four intersecting
segments, that means that we need to find four pairs of integers (a,b) € {£1,+2,+3 + 4} such
that a;by = axby = azbs. Therefore, the first time we observe a super-Iverberg point is when we
have nine points on the parabola, which first happens when we have n = 24. Next, we discuss the
asymptotic bounds on how many extra parts we can get as n gets large.

2.4. Bounds on Improvement for Second Stage

Following this process, the best Tverberg partition we can make is the one that uses the most
segments. This means that we want to know for a given number of points p, the maximum number
of divisors we can obtain such that the pairs multiply to the same value. We define the following
function to quantify this number of divisors.

Definition 2.6. Let
a(p) =max,#a | 3Ib,1 <a,b < p,ab =m}.

This means that a(p) counts the maximum number of positive divisors less than p such that pairs
of these divisors multiply to a common value m.

We first thought that «(p) might be the same function as maxNu(p) = max,e[1.,v(x) (where
v(x) counts the number of positive distinct divisors of x), however after creating a simple python
program to compare these values we found that a(p) grows faster than maxNu(p). However, we
know that a(p) is bounded above by maxNu(p?), since in the definition of a(p), m < p* (we can
also see this by plotting in python as in Figure 2.5).

600 A
—— maxNu(p”2)

alpha(p)
500 1 —— maxNu(p)

400 A

300 A

200 4

100 4

0 1000 2000 3000 4000 5000

FiGure 2.5. Plotted values of maxNu(p), a(p), and maxNu(p?) for p € [1..5000].
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Since v(n) = o(n) for all e > 0 [HW09, Thm. 315], we also get v(n?) = o(n*¢) = o(n€) for
all € > 0. Therefore «(p) is sublinear, so the growth of the number of extra parts we can get in a
super-Tverberg partition is at most sublinear. We have yet to explore whether we are always able to
form a Tverberg partition using triangles for the remaining points, but if this is true, then we have
found a tight bound for the growth of the number of extra parts, and therefore how much larger we
can make our final code. We conjecture that even if we are not able to make a Tverberg partition
using only triangles for the remaining points, the growth of the number of extra parts is unbounded.

Conjecture 2.7. For every s € N, there exists some n large enough such that we can get s extra
parts.

We think this is true since as n grows, the number of intersecting segments we can create
connecting integer points on the parabola is unbounded. However, we are not sure if we will always
be able to partition the remaining points into triangles, or into parts that are nearly all triangles,
such that the parts all intersect at the segments’ intersection point. Since we are uncertain on this
point, it may turn out that the number of extra parts s is upper bounded by some integer M.

2.5. Conclusion

Overall, we have shown that in the sI(2, C) case with distance three, we can optimize the first and
second stages of the KLV method for at least some values of n. Many questions remain for future
research. We don’t know if it is always possible to make a Tverberg partition with approximately
a(p) segments and (p — 2a(p))/3 triangles. We also want to find the exact asymptotic growth
of the number of extra parts that we can get using this method, and for which values of n we are
guaranteed to get a super-Tverberg point. More broadly, we also want to explore whether we can
generalize this method to optimize the second stage in the sI(2, C) case for higher distances.
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