1. Page 93, Ex 2.4, Pr. 18.

 a. \(\lim_{x \to 1^+} \frac{\sqrt{2x(x-1)}}{1x - 11} \)

 b. \(\lim_{x \to 1^-} \frac{\sqrt{2x(x-1)}}{1x - 11} \)

2. Page 93, Ex 2.4, Pr. 44.

 If you know that \(\lim_{x \to c} f(x) \) exists, can you find its value by calculating \(\lim_{x \to c^+} f(x) \) ?

3. Page 93, Ex 24, Pr. 52.

 \(f(x) = \begin{cases}
 x^2 \sin(1/x), & x < 0 \\
 \sqrt{x} & , x > 0.
 \end{cases} \)

 Find \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to 0^-} f(x) \); use definition of limit to verify your answer. Can you say anything about \(\lim_{x \to 0} f(x) \)?

4. Page 102, Ex 25, Pr. 6.

 \(f(x) = \begin{cases}
 x^2 - 1, & -1 \leq x < 0 \\
 2x, & 0 < x < 1 \\
 1 & , x = 1 \\
 -2x + 4 & , 1 < x < 2 \\
 0 & , 2 \leq x < 3.
 \end{cases} \)

 a. Does \(f(1) \) exist?
 b. Does \(\lim_{x \to 1^-} f(x) \) exist?
 c. Does \(f(1) = \lim_{x \to 1} f(x) \)?
 d. Is \(f(x) \) continuous at \(x = 1 \)?
5. **Page 102, Ex 2.5 Pr 14.**
 At which point(s) is \(f(x) = \frac{1}{(x+2)^2} + 4 \) Continuous?

6. **Page 102, Ex 2.5 Pr 20.**
 At which point(s) is \(f(x) = \frac{x+2}{\cos x} \) Continuous?

7. **Page 103, Ex 2.5 Pr 40.**
 Define \(h(2) \) in a way that extends \(h(t) = (t^2 + 3t - 10)/(t-2) \) to be continuous at \(t = 2 \).

8. **Page 103, Ex 2.5 Pr 44.**
 For what value of \(b \) is \(g(x) = \begin{cases} x & x < -2 \\ bx^2 & x \geq -2 \end{cases} \) continuous at every \(x \)?

9. **Page 103, Ex 2.5 Pr 56.**
 Show that the function \(F(x) = (x-a)^2 \cdot (x-b)^2 + x \) takes on the value \((a+b)/2 \) for some value of \(x \).

10. **Page 104, Ex 2.5 Pr 68.**
 Let \(f \) be defined on an interval \((c, b)\) and suppose \(f(c) \neq 0 \) at some \(c \) where \(f \) is continuous. Show that there is an interval \((c-\delta, c+\delta)\), where \(f \) has the same sign as \(f(c) \).