1. An object that falls freely in a vacuum, close to the surface of the earth has a constant acceleration of

\[g = 9.81 \frac{m}{s^2} = 32 \frac{ft}{sec^2} \]

If the object is dropped from rest, find its velocity and the distance it has traveled \(t \) seconds after it was released.

2. Approximate the area under the parabola \(y = x^2 \) from 0 to 1 using four subintervals with left endpoints.

3. Use parts a) and b.) to find the area of the region bounded by the graph of \(y = x^2 \), \(y = 0 \) between \(x = 0 \) and \(x = 4 \).
 a) Approximate the area using \(n \) intervals and left end points.
 b) Find the limit of the approximation as \(n \to \infty \) in part (a) above to find the area of the region.

4. Evaluate the following sums:
 a) \[\sum_{i=1}^{n} 9 \]
 b) \[\sum_{i=1}^{1053} 9 \]
 c) \[\sum_{i=34}^{876} 9 \]
 d) \[\sum_{i=1}^{50} i(2i + 3) \]
 e) \[\sum_{i=1}^{60} (5i - i^2) \]
 f) \[\sum_{i=1}^{30} (5i - i^2) \]
 g) \[\sum_{i=1}^{17} (5i - i^2) \]
 h) \[\sum_{i=1}^{30} \ln(i+2) - \ln(i+1) \]
 i) \[\sum_{i=1}^{n} \cos(\pi i) \]
 j) \[\sum_{i=1}^{17} \cos(\pi i) \]

5. Prove that \[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

6. Evaluate the following sums.
 a) \[1 + 2 + 3 + 4 + 5 \cdots + 75 \]
 b) \[151 + 152 + 153 + \cdots + 364 \]
 c) \[1 + 2 + 3 + 4 + \cdots + 2,074,804 \]
 d) \[1.2^6 + 1.1^7 + 1.1^8 + \cdots + 1.1^{200} \]

7. Sketch the graph of \(y = 3x^2 + 2 \) on the interval \([0, 1]\). Consider the area of the region below the graph and above the interval \([0, 1]\). Use the limit definition of a definite integral to find the exact area of the region.

8. Use the limit definition of a definite integral to evaluate \(\int_{-1}^{2} (x^2 - 2x + 1)dx \)

9. Differentiate:
 a.) \(F(x) = \int_{-1}^{3x} \sqrt{1+t^2}dt \)
 b.) \(F(x) = \int_{\tan x}^{\sec x} 5t^2 dt \)

10. Find an equation of the line perpendicular to the graph of
 a.) \(F(x) = 3 + \int_{0}^{2} 2e^t \ dt \) at \(x = 0 \)
 b.) \(F(x) = \int_{2x}^{x^2} \sqrt{t^3 + 5}dt \) at \(x = 2 \)