1. **Pr. 21.2** Consider \(f : S \rightarrow S^* \) where \((S, d)\) and \((S^*, d^*)\) are metric spaces. Show that \(f \) is continuous at \(s_0 \in S \) if and only if

 for every open set \(U \) in \(S^* \) containing \(f(s_0) \), there is an open set \(V \) in \(S \) containing \(s_0 \) such that \(f(V) \subset U \).

2. **Pr. 22.7** Explain why the metric space \(B \) in Exercise 13.3 can be regarded as \(C(\mathbb{N}) \). Recall that \((B, d)\) is defined as \(B = \{x = (x_1, x_2, \cdots)|x_i \in \mathbb{R}, \sup |x_i| < \infty \} \) and \(d(x, y) = \sup \{|x_i - y_i| : i = 1, 2, \cdots \} \).

3. **Pr. 22.12** Consider a subset \(\mathcal{E} \) of \(C(S), S \subset \mathbb{R} \). For this exercise, we say a function \(f_0 \) in \(\mathcal{E} \) is interior to \(\mathcal{E} \) if there exists a finite subset \(F \) of \(S \) and an \(\epsilon > 0 \) such that

 \[\{ f \in C(S) : |f(x) - f_0(x)| < \epsilon, \forall x \in F \} \subset \mathcal{E}. \]

 The set \(\mathcal{E} \) is open if every function in \(\mathcal{E} \) is interior to \(\mathcal{E} \).

 (a) Reread Discussion 13.7.

 (b) Show the family of open sets defined above forms a topology for \(C(S) \).

4. **Pr. 22.4** Consider the following subset of \(\mathbb{R}^2 \):

 \[E = \{(x, \sin \frac{1}{x}) : x \in (0, 1] \}; \]

 \(E \) is simply the graph of \(g(x) = \sin \frac{1}{x} \) along the interval \((0, 1] \).

 (a) Determine its closure \(E^- \).

 (b) Show \(E^- \) is connected.

 (c) Show \(E^- \) is not path-connected.
We use the notation $U_r(a) = \{ x : d(x, a) < r \}$, i.e., all points whose distance between a are less than r, namely the open ball with center a and radius r.

\Rightarrow. A U open, $f(s_0) \in U \subset S^x$, since U open, $\exists \varepsilon$ s.t. $U_\varepsilon(f(s_0)) \subset U$. Since f is cont. at s_0, we may pick $V = U_\delta(s_0)$. So, $\forall \; s \in V$, $d(s, s_0) < \delta$, so $d(f(s), f(s_0)) < \varepsilon$. So $f(s) \in U_\varepsilon(f(s_0)) \subset U$.

\Leftarrow. Pick $U = U_\varepsilon(f(s_0))$. By condition, $\exists \; V(\text{open}) \subset S$ w/ $s_0 \in V$ and $f(V) \subset U$. Since V open, $\exists \; \delta > 0$ we have $U_\delta(s_0) \subset U$.

2. \(\forall x = (x_1, x_2, \ldots) \in B \), identify \(x \) as
\[
f : \mathbb{N} \to \mathbb{R} \\
i \mapsto x_i
\]
Note any function \(\mathbb{N} \to \mathbb{R} \) is cont. and note \(x \) is bdd., so \(f \in C(\mathbb{N}) \)

\(\forall f \in C(\mathbb{N}) \), identify \(f \) as
\[
x = (x_1, x_2, \ldots)
\]
where \(x_i = f(i) \).

Note \(f \) is bounded, so \(x \in B \)

\[
d_B(x, y) = \sup \left\{ \| x_i - y_i \| : i = 1, 2, \ldots \right\}
\]
\[
= \sup \left\{ \| f(i) - g(i) \| : i = 1, 2, \ldots \right\}
\]
\[
= d_{C(\mathbb{N})}(f, g).
\]
3. (b) Need to show \(A = \{ \mathcal{E} \in \mathcal{C}(S) : \mathcal{E} \text{ is open} \} \) is a topology of \(\mathcal{C}(S) \).

\begin{enumerate}
\item "\(\mathcal{C}(S) \in \mathcal{A} \)" trivial
\item "\(\emptyset \in \mathcal{A} \)" trivial
\item "\(\exists i \in I, \forall i \in I \Rightarrow U \in \mathcal{E}_i \). So, \(\forall f \in \mathcal{E}_i \), \(\exists \varepsilon > 0 \) with \(\{ f \in \mathcal{C}(S) : |f(x) - f_0(x)| < \varepsilon, \forall x \in F \} \subseteq \mathcal{E}_i \)
\end{enumerate}

\(\mathcal{U} \in \mathcal{E}_i \).

So, \(\mathcal{U} \in \mathcal{E}_i \) open

\begin{enumerate}
\item "\(\exists i \in I, \forall i \in I \) finite \(\Rightarrow \mathcal{E}_i \in \mathcal{A} \)".
\end{enumerate}

\(\forall f \in \mathcal{E}_i \), \(\exists \varepsilon > 0 \) with \(\forall i \in I, \exists F_i \) finite \(\subseteq S \), \(\exists \varepsilon > 0 \) with \(\{ f \in \mathcal{C}(S) : |f(x) - f_0(x)| < \varepsilon, \forall x \in F_i \} \subset \mathcal{E}_i \)

Now pick \(F = \bigcup_{i \in I} F_i \), \(\varepsilon = \min \varepsilon_i \), then
\(\{ f \in \mathcal{C}(S) : |f(x) - f_0(x)| < \varepsilon, \forall x \in F \} \subset \mathcal{E}_i \forall i \in I \).

So, the result follows by taking \(F = \bigcup_{i \in I} F_i \), \(\varepsilon = \min \varepsilon_i \), then \(\{ f \in \mathcal{C}(S) : |f(x) - f_0(x)| < \varepsilon, \forall x \in F \} \subset \mathcal{E}_i \forall i \in I \).
We want to present the classic example of a space which is connected but not path-connected. Define
\[S = \{ (x, y) \in \mathbb{R}^2 | y = \sin(1/x) \} \cup \{ (0) \times [-1, 1] \} \subseteq \mathbb{R}^2, \]
so \(S \) is the union of the graph of \(y = \sin(1/x) \) over \(x > 0 \), along with the interval \([-1, 1]\) in the \(y \)-axis. Geometrically, the graph of \(y = \sin(1/x) \) is a wiggly path that oscillates more and more frequently (between the lines \(y = \pm1 \)) as we get near the \(y \)-axis (more precisely, over the tiny interval \(1/(2\pi(n + 1)) \leq x \leq 1/(2\pi n) \) the function \(\sin(1/x) \) goes through an entire wave).

We'll write \(S_+ \) and \(S_0 \) for these two parts of \(S \) (i.e., \(S_+ \) is the graph of \(y = \sin(1/x) \) over \(x > 0 \) and \(S_0 = \{ (0) \times [-1, 1] \} \)). It is clear that \(S_+ \) is path-connected (and hence connected), as is the graph of any continuous function (we use \(t \mapsto (t, \sin(1/t)) \) to define a path from \([a, b]\) to join up \((a, \sin(1/a))\) and \((b, \sin(1/b))\) for any \(0 < a \leq b \) and then reparameterize the source variable to make our domain \([0, 1]\)). We will show that \(S \) is connected but is not path-connected. Intuitively, a path from \(S_+ \) that tries to get onto the \(y \)-axis part of \(S \) cannot get there in finite time, due to the crazy wiggling of \(S_+ \). Of course, we have to convert this idea into precise mathematics.

1. Connectedness of \(S \)

We begin with a lemma which shows how to recover \(S \) from \(S_+ \). This will enable us to show that \(S \) is connected.

Lemma 1.1. The closure of \(S_+ \) in \(\mathbb{R}^2 \) is equal to \(S \).

The point of the lemma is that we'll show the closure of a connected subset of a topological space is always connected, so the connectedness of \(S_+ \) and this lemma then implies the connectedness of \(S \). The fact that \(S \) turns out to not be path-connected then shows that forming closure can destroy the property of path connectedness for subsets of a topological space (even a metric space).

Proof. To show that \(S \) lies in the closure of \(S_+ \), we have to express each \(p \in S \) as a limit of a sequence of points in \(S_+ \). If \(p \in S_+ \) we use the constant sequence \(\{ p, p, \ldots \} \). If \(p = (0, y) \) with \(|y| \leq 1 \), we argue as follows. Certainly \(y = \sin(\theta) \) for some \(\theta \in [-\pi, \pi] \), whence \(y = \sin(\theta + 2n\pi) \) for all positive integers \(n \). Thus, for \(x_n = 1/(\theta + 2n\pi) > 0 \) we have \(\sin(1/x_n) = y \) for all \(n \). Since \(x_n \to 0 \) as \(n \to \infty \), we have \((x_n, \sin(1/x_n)) = (x_n, y) \to (0, y) \). Geometrically, this is the infinite sequence of points where the horizontal line through \(y \) cuts the graph of \(\sin(1/x) \).

Now that we have shown that the set \(S \) containing \(S_+ \) lies inside the closure of \(S_+ \), to show that it is the closure of \(S_+ \) we just have to show that \(S \) is closed (as the closure of \(S_+ \) in \(\mathbb{R}^2 \) is the unique minimal closed subset of \(\mathbb{R}^2 \) which contains \(S_+ \)). Let \(\{(x_n, y_n)\} \) be a sequence in \(S \) with limit \((x, y) \in \mathbb{R}^2 \). We must prove \((x, y) \in S \). Since \(x = \lim x_n \) and \(y = \lim y_n \), we know that \(x \geq 0 \) and \(|y| = \lim |y_n| \leq 1 \). If \(x = 0 \), then clearly \((x, y) = (0, y) \in S \) since \(|y| \leq 1 \). If \(x > 0 \), then upon dropping the first few terms of the sequence we can assume \(x_n > 0 \) for all \(n \). Then \((x_n, y_n) \in S \) must lie on \(S_+ \), so \(y_n = \sin(1/x_n) \). Since the function \(t \mapsto \sin(1/t) \) on \((0, \infty)\) is continuous, from the condition \(x_n \to x \) we conclude
\[y = \lim y_n = \lim \sin(1/x_n) = \sin(1/x). \]
Thus, \((x, y) \in S_+ \subseteq S \) once again. \(\blacksquare \)

Thanks to the lemma, the connectedness of \(S \) is an immediate consequence of the following general fact (applied to the topological space \(\mathbb{R}^2 \) and the connected subset \(S_+ \)):

Theorem 1.2. Let \(X \) be a topological space and \(Y \) a connected subset. Then the closure \(\overline{Y} \) of \(Y \) in \(X \) is connected.
Proof. Without loss of generality, \(Y \neq \emptyset \). Suppose that \(\{U, V\} \) is a separation of \(\overline{Y} \). That is, \(U \) and \(V \) are disjoint opens of \(\overline{Y} \) with union equal to \(\overline{Y} \). We want one of them to be empty. The intersections \(U' = U \cap Y \) and \(V' = V \cap Y \) give a separation of \(Y \) (why?), so by connectedness of \(Y \) we have that one of \(U' \) or \(V' \) is empty and the other is equal to \(Y \). Without loss of generality, we may suppose \(U' = Y \) and \(V' = \emptyset \).

Since \(U \) is closed in \(\overline{Y} \), it has the form \(U = \overline{Y} \cap Z \) for some closed subset \(Z \) in \(X \). But \(Y \subseteq U \subseteq Z \), so by closedness of \(Z \) it follows that \(\overline{Y} \subseteq Z \). Then
\[
U = \overline{Y} \cap Z = \overline{Y},
\]
and by disjointness \(V \) must then be empty. Hence, \(\overline{Y} \) indeed has no non-trivial separations, so it is connected. \(\blacksquare \)

2. \(S \) is not path-connected

Now that we have proven \(S \) to be connected, we prove it is not path-connected. More specifically, we will show that there is no continuous function \(f : [0, 1] \to S \) with \(f(0) \in S_0 \) and \(f(1) \in S_0 = \{0\} \times [-1, 1] \). Assuming such an \(f \) exists, we will deduce a contradiction. Thanks to path-connectedness of \(S_0 \), we can extend our path to suppose \(f(1) = (0, 1) \). Choose \(\varepsilon = 1/2 > 0 \). By continuity, for some small \(\delta > 0 \) we have \(|f(t) - (0,1)| < 1/2 \) whenever \(1 - \delta \leq t \leq 1 \). If you draw the picture, you'll see that the graph of \(\sin(1/x) \) keeps popping out of the disc around \((0,1)\) of radius \(1/2 \), and that will contradict the existence of a continuous path \(f \).

To be precise, consider the image \(f([1-\delta, 1]) \), which must be connected since \(f \) is continuous and \([1-\delta, 1] \) is connected. Let \(f(1-\delta) = (x_0, y_0) \). Consider the composite of \(f : [1-\delta, 1] \to \mathbb{R}^2 \) and projection to the \(x \)-axis. Both such maps are continuous, hence so is their composite, so the image of the composite map is a connected subset of \(\mathbb{R} \) which contains \(0 \) (the \(x \)-coordinate of \(f(1) \)) and \(x_0 \) (the \(x \)-coordinate of \(f(1-\delta) \)). But since connected subsets of \(\mathbb{R} \) must be intervals, it follows that the set of \(x \)-coordinates of points in \(f([1-\delta, 1]) \) includes the entire interval \([0, x_0]\). Thus, for all \(x_1 \in (0, x_0) \) there exists \(t \in [1-\delta, 1] \) such that \(f(t) = (x_1, \sin(1/x_1)) \).

In particular, if \(x_1 = 1/(2n\pi - \pi/2) \) for large \(n \) then \(0 < x_1 < x_0 \) yet \(\sin(1/x_1) = \sin(-\pi/2) = -1 \). Thus, the point \((1/(2n\pi - \pi/2), -1) \) has the form \(f(t) \) for some \(t \in [1-\delta, 1] \), and hence this point lies within a distance of \(1/2 \) from the point \((0,1)\). But that's a contradiction, since the distance from \((1/(2n\pi - \pi/2), -1)\) to \((0,1)\) clearly at least \(2 \) (as is the distance between any point on the line \(y = 1 \) and any other point on the line \(y = -1 \)).