1.

(a) \(\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf \{a_k : k \geq n\} \)

\(\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \sup \{a_k : k \geq n\} \)

(b) \(a_n = (-1)^n \).

\(a_n \) is bounded by 1.

But \(\liminf a_n = -1 \neq 1 = \limsup a_n \)

(c) NO.

If \((a_n) \) is increasing and bounded, then \(\lim a_n \) exists, which means \(\liminf a_n = \limsup a_n \)

2.

(a) \((x_n) \) is increasing.

Note \(x_{n+1}^2 = 1 + x_n^2 \). So, \(x_{n+1}^2 - x_n^2 = 1 \).

So \((x_{n+1} - x_n)(x_{n+1} + x_n) = 1 > 0 \).

As \(x_n > 0, \forall n \in \mathbb{N} \). So \(x_{n+1} - x_n > 0 \). That is \(x_{n+1} > x_n \).

So, \((x_n) \) is increasing.

\(x_n \to \infty \).

We show \((x_n) \) is not bounded, thus not convergent.

Suppose it is bounded.

Then as it is also increasing, so it has a limit, say \(\alpha \). Also note \(\lim x_{n+1} = \lim x_n = \alpha \).

Then we have

\(\alpha = \sqrt{1 + \alpha^2} \),

which gives \(\alpha = 1 \). Contradiction.
(b). "(\(x_n\)) is increasing".

Base Step: \(x_1 = \sqrt{1 + \frac{1}{5} x^2} = \sqrt{6/5} > x_0 \). TRUE.

Inductive Step:

Suppose \(x_n > x_{n-1} \). We show \(x_{n+1} > x_n \).

\[
 x_{n+1} = \sqrt{1 + \frac{1}{5} x^2} > \sqrt{1 + \frac{1}{5} x^2_{n-1}} = x_n \text{. TRUE.}
\]

So. \((x_n)\) is increasing.

"Bounded".

We show \(|x_n| < \frac{\sqrt{5}}{2} \) \(\forall n \in \mathbb{N} \), by induction.

Base Step: \(|x_0| = 1 < \frac{\sqrt{5}}{2} \). TRUE.

Inductive Step:

Suppose \(|x_{n-1}| < \frac{\sqrt{5}}{2} \), we show \(|x_{n}| < \frac{\sqrt{5}}{2} \).

\[
 |x_{n}| = \sqrt{1 + \frac{1}{5} x_{n-1}^2} < \sqrt{1 + \frac{1}{5} (\frac{\sqrt{5}}{2})^2} = \frac{\sqrt{5}}{2} \text{. TRUE.}
\]

So, \((x_n)\) is bounded by \(\frac{\sqrt{5}}{2} \).

"Limit".

As \((x_n)\) is increasing and bounded, the limit exists.

Also note \(\lim x_n = \lim x_{n+1} \). Denote \(\alpha = \lim x_n \). Then

\[
 \alpha = \sqrt{1 + \frac{1}{5} \alpha^2},
\]

which gives \(\alpha = \pm \frac{\sqrt{5}}{2} \).

As \(x_n > 0, \forall n \in \mathbb{N} \). \(\alpha = \frac{\sqrt{5}}{2} \).
3.

(a) \(\lim a_n = \infty \Rightarrow \lim \frac{1}{a_n} = 0 \).

As \(\lim a_n = \infty \), \(\forall M > 0, \exists N \in \mathbb{N}, \text{s.t.} \ n > N \Rightarrow a_n > M \).

Now, \(\forall \varepsilon > 0 \), define \(M = \frac{1}{\varepsilon} \). Then for this \(M \), \(\exists N \in \mathbb{N} \) \(\text{s.t.} \ n > N \Rightarrow a_n > \frac{1}{\varepsilon} \), i.e., \(\frac{1}{a_n} < \varepsilon \). That is \(|\frac{1}{a_n} - 0| < \varepsilon \). So, \(\lim \frac{1}{a_n} = 0 \).

\(\lim a_n = \infty \iff \lim \frac{1}{a_n} = 0 \).

As \(\lim \frac{1}{a_n} = 0 \), \(\forall \varepsilon > 0, \exists N \in \mathbb{N} \) \(\text{s.t.} \ n > N \Rightarrow a_n > \frac{1}{\varepsilon} \). That is \(a_n > \frac{1}{\varepsilon} \).

Now, \(\forall M > 0 \), define \(\varepsilon = \frac{1}{M} \). Then for this \(\varepsilon \), \(\exists N \in \mathbb{N} \) \(\text{s.t.} \ n > N \Rightarrow a_n > \frac{1}{\varepsilon} = M \). That is \(a_n \to \infty \).

(b) Without the assumption that \(a_n > 0 \), we still have the statement \(\lim a_n = \infty \Rightarrow \lim \frac{1}{a_n} = 0 \) to be true. But the converse is NOT necessarily to be true.

Counter example 1:
\[a_n = (-1)^n \frac{1}{n} \] Then \(a_n \to 0 \) as \(n \to \infty \).
But \(\frac{1}{a_n} = (-1)^n n \), which does not go to \(\infty \).
This is because, \(\exists M = 1, \forall N \in \mathbb{N}, \exists n > N \) \(\text{s.t.} \ a_n < 0 < M \).

Counter example 2:
\[a_n = -n \]
(a) \(\sum a_n \) converges absolutely means \(\sum |a_n| \) converges.

\(\sum a_n \) converges conditionally means \(\sum |a_n| \) does not converge, but \(\sum a_n \) converges.

(b) For any \(k \in \mathbb{N} \), \(1 + \frac{1}{k!} > 1 \), so \((1 + \frac{1}{k!})^k > 1 \).

So \(\sum_{k=1}^{\infty} (1 + \frac{1}{k!})^k > \sum 1 \).

So, it diverges.

(c) Note \(\frac{k}{k^3 + 1} < \frac{k}{k^3} = \frac{1}{k^2} \).

So, \(\sum \frac{k}{k^3 + 1} < \sum \frac{1}{k^2} \), which converges.

So, \(\sum (-1)^k \frac{k}{k^3 + 1} \) converges absolutely.

(d) Note \(\frac{1}{k^{-\frac{1}{k}}} > \frac{1}{k} \).

So, \(\sum \frac{1}{k^{-\frac{1}{k}}} > \sum \frac{1}{k} \), which diverges.

So, \(\sum (-1)^k \frac{1}{k^{-\frac{1}{k}}} \) does not converge absolutely.

But \(\frac{1}{k^{-\frac{1}{k}}} \) is decreasingly approaching zero, so by alternating series test theorem, \(\sum (-1)^k \frac{1}{k^{-\frac{1}{k}}} \) converges conditionally.

\[
\left[\frac{1}{k} \downarrow \Rightarrow -\frac{1}{k} \uparrow \Rightarrow k^{-\frac{1}{k}} \uparrow \Rightarrow \frac{1}{k^{-\frac{1}{k}}} \downarrow \right]
\]
(e). Note \(\frac{2k+3}{3k+2} < \frac{2k+3}{3k} \)
\[\begin{align*}
&< \frac{2k+\frac{1}{2}k}{3k} \\
&\quad \text{if } 3 < \frac{1}{2}k, \text{ i.e., } 6 < k
\end{align*} \]
\[= \frac{5}{6} \)

So, if \(k > 6 \), \(\left(\frac{2k+3}{3k+2} \right)^k < (\frac{5}{6})^k \).

So, \(\sum_{k=7}^{\infty} \left(\frac{2k+3}{3k+2} \right)^k < \frac{18}{5} \left(\frac{5}{6} \right)^k < \infty \).

So, \(\sum_{k=1}^{\infty} \left(\frac{2k+3}{3k+2} \right)^k < \infty \).

So, \(\sum \left(\frac{2k+3}{3k+2} \right)^k \) converges absolutely.

[Alternative Way: Root Test.]

5.

(a). Note \(\frac{1}{1+a_k} < 1 \) given \(a_k > 0 \), \(\forall k \in \mathbb{N} \).

So, \(\frac{a_k}{1+a_k} < a_k \).

So, \(\sum \frac{a_k}{1+a_k} < \sum a_k < \infty \).

So, the statement is TRUE.
(b). The statement is FALSE

Counter example:

\[a_k = 1, \forall k \in \mathbb{N}. \] Then \(\sum a_k \) diverges.

But every rearrangement of \(\sum a_k \) is \(\sum a_k \) itself, which diverges.

Remark: Every divergent series (with positive terms)

is a counter example.

(c). Let

\[a_n = \begin{cases} \frac{1}{n^2} & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even.} \end{cases} \]

Then \(\lim \inf n^2 a_n = 0 \).

But \(\sum a_n \) diverges.