1. In each case below, determine the accumulation points of A. Also determine the closure \overline{A}, the boundary ∂A and interior(A).
 (a) $A = (0, 2)$.
 (b) $A = (0, 2) \cap \mathbb{Q}$.
 (c) $A = (0, 2) \cup \{3\}$.
 (d) $A = \{n + 1/n : n \in \mathbb{N}\}$.

2. Let $A \subseteq \mathbb{R}$, and $a \in A$. Prove that a is either an interior point of A or an accumulation point of A^c, but that it cannot be both.

3. Assume that $A \subseteq \mathbb{R}$ is bounded above. Prove that if $\sup A \not\in A$, then $\sup A$ is an accumulation point of A.

4. Determine, with proof, whether each of the following statements is true or false.
 (a) If $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$ is an upper bound of A, then x is not in the interior of A.
 (b) If $A, B \subseteq \mathbb{R}$, and x is both an interior point of A and an interior point of B, then x is an interior point of $A \cap B$.
 (c) If $A, B \subseteq \mathbb{R}$, and x is both a boundary point of A and a boundary point of B, then x is a boundary point of $A \cap B$.
 (d) If $A \subseteq \mathbb{R}$ is open, then $A \cap (0, 1)$ is open.
 (e) If $A \subseteq \mathbb{R}$ is closed, then $A \cap (0, 1)$ is not closed.
 (f) If $A \subseteq \mathbb{R}$, then $\overline{A} = A \cap \overline{\mathbb{Q}}$.
 (g) If $A \subseteq \mathbb{R}$, then $\overline{A^c} = \overline{A^c}$.