Recall: I) Discrete Compound Interest: \(A = P \left(1 + \frac{r}{n}\right)^{nt} \)

II) \(e := \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k \)

To obtain formula for continuous compound interest, the interest must be compounded an \(\infty \) number of times, which is equivalent to letting \(n \to \infty \) in above formula.

\[
\lim_{n \to \infty} P \left(1 + \frac{r}{n}\right)^{nt} = \lim_{n \to \infty} P \left(\left(1 + \frac{1}{\left(n\right)} \right)^{\left(n\right)} \right)^{rt} = P e^{rt}
\]

By II) = \(e \)

Hence, continuous compound interest formula is \(A = P e^{rt} \).

Note: You don’t need to know this argument for the exams, but it could be an extra credit question.

Ex 2 You wish an initial deposit of \(\$800 \) to grow to \(\$1800 \) in 8 years. If interest is compounded daily, what should the yearly interest rate \(r \) be?

Given: \(P = \$800, \quad A = \$1800, \quad t = 8 \text{ yrs}, \quad n = 365 \)

Plugging into \(A = P \left(1 + \frac{r}{n}\right)^{nt} \), we need to solve for \(r \)

\[
1800 = 800 \left(1 + \frac{r}{365}\right)^{365 \times 8}
\]

\[
\Rightarrow \left(\frac{18}{8}\right)^{365 \times 8} = 1 + \frac{r}{365} \Rightarrow 1 + \frac{r}{365} \approx 1.000277254
\]

\[
\Rightarrow r = 0.1013 \quad \text{or} \quad r = 10.13\%
\]