1.) Do detailed graphing (See instruction sheet from class.) for each function

 a.) \(y = x(x - 4) \) on the interval \([0, 5]\)

 b.) \(y = x(x - 5)^4 \)

 c.) \(f(x) = \frac{3x^2}{x - 4} \)

 d.) \(f(x) = 4\sqrt{x} - x \)

2.) Consider the function \(f(x) = 1 - x^{2/3} \) on the interval \([-1, 1]\). Show that \(f(1) = f(-1) = 0 \) but that \(f'(x) \) is never zero on the interval \([-1, 1]\). Explain how this is possible, in view of the Mean Value Theorem.

3.) Let \(f(x) = \begin{cases}
 -x^2, & \text{if } -1 \leq x \leq 0 \\
 x^2(x - 1), & \text{if } 0 < x \leq 2
\end{cases} \)

 a.) Sketch the graph of \(f \).

 b.) Show that \(f \) satisfies the conditions of the Mean Value Theorem (MVT) over the interval \([-1, 2]\), including special attention at \(x = 0 \), and determine all values of \(c \) guaranteed by the MVT.

4.) Use a linearization to estimate the value of

 a.) \(\sqrt{150} \)

 b.) \(e^{0.1} \)

5.) The radius of a circle is measured with absolute percentage error of at most 3%. Use differentials to estimate the maximum absolute percentage error in computing the circle’s

 a.) circumference.

 b.) area.

 (RECALL: For a circle: circumference \(C = 2\pi r \) and area \(A = \pi r^2 \).)

6.) The radius of a sphere is measured with absolute percentage error of at most 4%. Use differentials to estimate the maximum absolute percentage error in computing the sphere’s

 a.) surface area.

 b.) volume.

 (RECALL: For a sphere: surface area \(S = 4\pi r^2 \) and volume \(V = (4/3)\pi r^3 \).)

The following problem is for recreational purposes only.

7.) Find a hidden pattern and determine the next number in the sequence:

 0, 1, 3, 7, 14, 25, 41, 63, \ldots