Math 17A
Vogler
The Differential

Let Δx be the change (error) in x, and assume x changes from a to $a+\Delta x$.

- Define the exact change in f as
 \[\Delta f = \Delta y = f(a+\Delta x) - f(a) \]

- Note: slope of line $L = \frac{\text{rise}}{\text{run}} \Rightarrow f'(a) = \frac{df}{\Delta x} \Rightarrow df = f'(a) \Delta x$

- Define the differential (approximate change) of f as
 \[df = f'(a) \Delta x \]

- Fact: If Δx is ‘small’ then $df \approx \Delta f$

With this fact & the differential, we can approximate or simply functions by the following eqn for a line

\[f(a+\Delta x) \approx f(a) + df = f(a) + f'(a) \Delta x \]

A more convenient form for this line is obtained by letting $x = a+\Delta x$ ($\Rightarrow \Delta x = x-a$) and rewriting as

\[L(x) = f(a) + f'(a) (x-a) \]

This equation is called the linearization of $f @ x=a$.

Note: To use the linearization effectively, you must choose ‘a’ such that $f(a)$ & $f'(a)$ can be easily determined.
More examples using differentials

Example 1: For small \(h \), show that \(\sqrt{4+3h^2} \approx 2 + \frac{3}{4}h^2 \) using differentials.

Soln Let \(f(x) = \sqrt{x} \) & assume that \(x: 4 \rightarrow 4 + 3h^2 \)

\[\Delta x = 3h^2 \quad \Rightarrow \quad f'(x) = \frac{1}{2\sqrt{x}} \].

Since \(\Delta x \) is small (b/c \(h \) is small)

\[\Delta f \approx df \quad \Rightarrow \quad f(4 + 3h^2) - f(4) \approx f'(4) \cdot \Delta x \]

\[= \sqrt{4 + 3h^2} - \sqrt{4} \approx \frac{1}{2\sqrt{4}} \cdot 3h^2 = \frac{3}{4}h^2 \]

\[\Rightarrow \sqrt{4 + 3h^2} \approx 2 + \frac{3}{4}h^2 \]

Example 2: If the radius of a circle is measured w/ an absolute percentage error of @ most 3%, use differentials to estimate the maximum absolute percentage error in computing the circle's

a) circumference

\[\text{Solution: Assume that} \quad \frac{|\Delta r|}{r} \leq 3\% \]

\[\text{a)} \quad C = 2\pi r \quad \Rightarrow \quad C' = 2\pi, \text{ find} \quad \frac{|\Delta C|}{C} = \frac{1}{C} \cdot \frac{|\Delta r|}{r} \leq 3\% \]

\[\left| \frac{\Delta A}{A} \right| \sim \frac{|\Delta A|}{A} = \frac{1}{A} \cdot \frac{|\Delta r|}{r} = \frac{|\Delta r|}{r} \leq 2(3\%) = 6\% \]

b) \(A = \pi r^2 \rightarrow A' = 2\pi r \), find \(\frac{1}{A} \)

b) \[\frac{|\Delta A|}{A} \sim \frac{|\Delta A|}{A} = \frac{1}{2\pi r^2} \cdot \frac{|\Delta r|}{r} = \frac{|\Delta r|}{r} \leq 2(3\%) = 6\% \]