Math 21B Vogler Worksheet 8

- 1.) Sally is 5 years old and her grandmother gives her \$1000 to deposit in a savings account. If Sally leaves all that money in her account for 50 years, how much money will be in the account if the annual interest rate is r = 5.25% and interest is
 - a.) computed as simple interest?
 - b.) compounded
 - i.) annually?
 - ii.) monthly?
 - iii.) weekly?
 - iv.) daily?
 - v.) hourly?
 - vi.) every minute?
 - vii.) every second?
 - c.) compounded continuously?
- 2.) If \$2000 is to grow to \$2500 in a money market account, how long will it take if interest is compounded continuously and the annual interest rate is r = 4.5%?
- 3.) Assume that \$1000 grows to \$2000 in a certificate of deposit at the Big Bucks Bailout National Bank. If it takes 7 years and interest is compounded monthly, what is the annual interest rate r?
- 4.) Use any method to determine the following indefinite integrals (antiderivatives).

a.)
$$\int \arcsin x \, dx$$
 b.) $\int \sin \sqrt{x} \, dx$ c.) $\int \ln x \, dx$ d.) $\int x(\ln x)^2 \, dx$

e.)
$$\int \sec^5 x \tan^3 x \, dx$$
 f.) $\int \sec^2 x \tan^2 x \, dx$ g.) $\int (\cot^2 x + \tan^2 5x) \, dx$

h.)
$$\int (\sec 3x - \csc(x/2)) dx$$
 i.) $\int \sin^2 4x dx$ j.) $\int \sin^3 x dx$ k.) $\int \sin 3x dx$

1.)
$$\int \frac{\sec^3 x}{\tan x} dx$$
 m.) $\int \cos^3 x \sin^2 x dx$ n.) $\int \frac{1}{\sqrt{x}\sqrt{1-x}} dx$ o.) $\int (1+\cos\theta)^3 dx$

p.)
$$\int \frac{1-x}{\sqrt{1-4x^2}} dx$$
 q.) $\int (4x+3)^{125/7} dx$ r.) $\int \sec x \tan x dx$ s.) $\int \sec^2 x \tan x dx$

t.)
$$\int \sec^5 x \tan x \, dx$$
 u.) $\int \frac{1}{\sin x \cos x} \, dx$ v.) $\int_{\pi/3}^{\pi/2} \sqrt{1 + \cos x} \, dx$ w.) $\int \frac{1}{1 + \cos x} \, dx$

5.) Compute the area of the region bounded by the graphs of $y=xe^x,y=0,$ and $x=\ln 4.$

1

- 6.) Find the following antiderivative three ways, a.) using u-substitution, b.) using integration by parts, c.) using trig substitution: $\int x^3 \sqrt{1-x^2} dx$
- 7.) Find the following integrals by using integration by parts twice with a twist:
- a.) $\int e^{2x} \sin x \, dx$ b.) $\int \sin 3x \cos 2x \, dx$
- 8.) Find the average value of $f(x) = x \ln x$ on the interval [1, e].
- 9.) Use trig substitution to integrate the following.

a.)
$$\int x^2 \cdot \sqrt{1 - x^2} \, dx$$
 b.) $\int \frac{1}{x\sqrt{x^2 + 9}} \, dx$ c.) $\int x^3 \cdot \sqrt{x^2 - 4} \, dx$

10.) Use integration by parts to write a recursion (reduction) formula for each of the following (n is a positve integer and b is a constant).

a.)
$$\int x^n e^{bx} dx$$
 b.)
$$\int \sec^n(bx) dx$$
 (HINT: $1 + \tan^2 \theta = \sec^2 \theta$)

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

11.) A nonnegative integer I is a perfect square, triangular (PST) number if I is equal to the square of a nonnegative integer AND is also equal to one-half the product of consecutive nonnegative integers. Find the first four PST numbers.