Arc Length, Unit Tangent Vector, Unit Normal Vector, & Curvature

Position Vector: \(\vec{r}(t) = f(t) \hat{i} + g(t) \hat{j} + h(t) \hat{k} \)

Velocity Vector: \(\vec{v}(t) = f'(t) \hat{i} + g'(t) \hat{j} + h'(t) \hat{k} \)

Acceleration Vector: \(\vec{a}(t) = f''(t) \hat{i} + g''(t) \hat{j} + h''(t) \hat{k} \)

\[|\vec{v}(t)| = \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} \]

Let curve \(C \) be determined by vector function \(\vec{r}(t) : \mathbb{R} \to \mathbb{R}^3 \).

Defn The **arc length** \(s \) for \(t = a \) to \(t \) is

\[s(t) = \int_a^t \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} \, dt = \int_a^t |\vec{v}(t)| \, dt \]

Defn The **unit tangent vector** for \(\vec{r}(t) \) is

\[\hat{T}(t) = \frac{\vec{v}(t)}{|\vec{v}(t)|} \]

Notes:
1) \(\hat{T}(t) \) points in direction of motion along \(C \).
2) \(\hat{T}(t) \) is a unit vector.

Defn The **principal unit normal vector** for \(\vec{r}(t) \) is

\[\hat{N}(t) = \frac{\hat{T}'(t)}{|\hat{T}'(t)|} \]

Thm
1) \(\hat{N}(t) \) is a unit vector.
2) \(\hat{N}(t) \) is normal to the path \(C \) determined by \(\vec{r}(t) \), i.e., \(\hat{N}(t) \) is orthogonal to \(\hat{T}(t) \).
3) \(\hat{N}(t) \) points in the direction that curve \(C \) is turning.
Defn The curvature of the path C is
$$\kappa = \left| \frac{dT}{ds} \right|$$

Formula for Computing Curvature
$$\kappa = \frac{1}{|\vec{N}(t)| \cdot |\vec{T}'(t)|}$$

Fact: The curvature of a circle of radius a is $\kappa = \frac{1}{a}$

Defn The circle of curvature at a point P on path C is the circle in the plane of the curve that
1) is tangent to the curve at P (has same tangent line)
2) has same curvature that curve C has at P
3) lies toward the concave (inner) side of curve C
4) has radius $\rho = \frac{1}{\kappa}$, which is referred to as radius of curvature

Circle of Curvature

Small $\kappa \Rightarrow$ Big radius ρ
(Since small change in \vec{T})

Big $\kappa \Rightarrow$ Small radius ρ
(Since Big change in \vec{T})