Cylindrical Coordinates

Rectangular Coordinates: \(P = (x, y, z) \)

Cylindrical Coordinates: \(P = (r, \theta, z) \)

Identities (From Polar Coords)

\[
\begin{align*}
x &= r \cos \theta \\
y &= r \sin \theta \\
r^2 &= x^2 + y^2 \\
\tan \theta &= \frac{y}{x}
\end{align*}
\]

In Cylindrical Coordinates, our 'lego' piece looks like

\(\Delta V_i \)

To find the 'exchange rate' for \(dV \),

\(\Delta z_i \); we note \(\Delta V_i = (\text{base area}) \cdot (\text{height}) = \Delta A_i \Delta z_i \).

From Polar Coordinates, \(\Delta A_i = r \Delta r_i \Delta \theta_i \)

\(\Rightarrow \Delta V_i = r \Delta r_i \Delta \theta_i \Delta z_i = r \Delta z_i \Delta r_i \Delta \theta_i \Delta z_i \)

As \(\Delta V_i \to 0 \) (which is equivalent to \(n \to \infty \)), we conclude

\[
dV = r \, dz \, dr \, d\theta
\]

'Exchange Rate'

Notes:

1) \(dV = rdz \, dr \, d\theta = r \, dr \, dz \, d\theta = r \, d\theta \, dz \, dr = r \, d\theta \, dr \, dz \) are called **cylindrical coords**.

2) \(dV = rdz \, dr \, d\theta \) is the most commonly used form, since it tends to be easiest to construct.

3) Cylindrical Coordinates are just Polar Coordinates with the third dimension given by the rectangular coordinate 'z' (i.e. measure of height)