Math 21D
Voyler

Line Integrals

\(\mathbf{r}(t): \mathbb{R} \to \mathbb{R}^3 \)

Exchange rate: \(\Delta s = \frac{ds}{dt} \Delta t \)

\(t_i \) such that \(\mathbf{r}(t_i) = P_i \)

- Let \(C \) be curve defined by \(\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k} \) for \(t = a \) to \(t = b \)
- Let \(f(P) \) be function defined on \(C \) (i.e. \(f(x,y,z) = f(g(t), h(t), k(t)) \))
- Let \(C_1, \ldots, C_n \) be subdivision of \(C \) w/ corresponding arc lengths \(\Delta s_1, \Delta s_2, \ldots, \Delta s_n \).
- Let \(P_i = (x_i, y_i, z_i) \) be arbitrary pt. in \(C_i \) \(\forall i = 1, \ldots, n \)
- Let mesh be \(\Delta s_i = \max_{i \in \text{set}} \{ \Delta s_i \} \)

Then the line integral of \(f \) over curve \(C \) from \(t = a \) to \(t = b \) is

\[
\int_C f(x, y, z)\, ds = \lim_{\Delta t \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \cdot \Delta s_i = \lim_{\Delta t \to 0} \sum_{i=1}^{n} f(g(t_i), h(t_i), k(t_i)) \frac{ds}{dt} \Delta t
\]

Method of Evaluation

\[
\int_C f(x, y, z)\, ds = \int_{a}^{b} f(g(t), h(t), k(t)) \cdot \frac{ds}{dt} \, dt
\]

w/ \(\frac{ds}{dt} = |\dot{\mathbf{r}}(t)| = \sqrt{(g'(t))^2 + (h'(t))^2 + (k'(t))^2} \)

Extra info.
Applications of Line Integrals

Let \(\delta(P) = \delta(x,y,z) \) be density \(\frac{\text{mass}}{\text{length}} \) units be defined on \(C \).

1) Length = \(s := \int_C 1 \, ds \)

2) Mass = \(m := \int_C \delta(P) \, ds \)

3) 1st Moments about Arpibary Planes
 - About plane \(x=x_0 \): \(M_x = \bar{x} = \int_C (x-x_0) \delta(P) \, ds \)
 - About plane \(y=y_0 \): \(M_y = \bar{y} = \int_C (y-y_0) \delta(P) \, ds \)
 - About plane \(z=z_0 \): \(M_z = \bar{z} = \int_C (z-z_0) \delta(P) \, ds \)

4) 1st Moments about Coordinate Planes
 \(M_{yz} = \int_C x \delta(P) \, ds, \quad M_{xz} = \int_C y \delta(P) \, ds, \quad M_{xy} = \int_C z \delta(P) \, ds \)
 Note: \(M_{yz} = M_{x=0}, \quad M_{xz} = M_{y=0}, \quad M_{xy} = M_{z=0} \)

5) Center of Mass \((\bar{x}, \bar{y}, \bar{z})\)
 \(\bar{x} = \frac{M_{yz}}{m}, \quad \bar{y} = \frac{M_{xz}}{m}, \quad \bar{z} = \frac{M_{xy}}{m} \)

6) Centroid \((\bar{x}, \bar{y}, \bar{z})\)
 \(\bar{x} = \frac{\int_C x \, ds}{\text{Length}}, \quad \bar{y} = \frac{\int_C y \, ds}{\text{Length}}, \quad \bar{z} = \frac{\int_C z \, ds}{\text{Length}} \)

7) Moments of Inertia (2nd Moments)
 - About line \(L \) or pt. \(P_0 \): \(I = \int_C r^2 \delta(P) \, ds \)
 w/ \(r := r(x,y,z) \) is distance from line \(L \) or pt. \(P_0 \)
 - About \(x \)-axis: \(I_x = \int_C (y^2+z^2) \delta(P) \, ds \)
 - About \(y \)-axis: \(I_y = \int_C (x^2+z^2) \delta(P) \, ds \)
 - About \(z \)-axis: \(I_z = \int_C (x^2+y^2) \delta(P) \, ds \)