Thm. The Ratio Test
Let \(\sum a_n \) be a series w/ pos. terms & suppose that \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho \)

\[\Rightarrow \quad \text{a) } \sum a_n \text{ converges if } \rho < 1 \]

\[\text{b) } \sum b_n \text{ diverges if } \rho > 1 \]

\[\text{c) } \text{the test is inconclusive if } \rho = 1 \]

pf.

a) \(\rho < 1 \)

Let \(r \) be a \# b/w \(\rho \) \(<1 \) (i.e. \(\rho < r < 1 \)) \(\Rightarrow \ \exists \ \varepsilon = r - \rho > 0 \).

Since \(\frac{a_{n+1}}{a_n} \to \rho \) by defn of limits

\[\Rightarrow \text{there exists } N \text{ s.t. } n \geq N \Rightarrow \frac{a_{n+1}}{a_n} - \rho < \varepsilon \]

\[\Rightarrow \frac{a_{n+1}}{a_n} < \rho + \varepsilon = r \text{ when } n \geq N \]

This gives us the following \(\langle \)'s:

\[
\begin{align*}
 a_{N+1} &< ra_N \\
 a_{N+2} &< ra_{N+1} < r^2 a_N \\
 a_{N+3} &< ra_{N+2} < r^3 a_N \\
 \vdots \\
 a_{N+m} &< ra_{N+m-1} < r^m a_N
\end{align*}
\]

\(\text{Consider the series } \sum c_n \text{ w/ } \)

\(c_n = a_n \text{ for } n = 1, 2, \ldots, N \) & \(c_{N+1} = ra_N, \ c_{N+2} = ra_N, \)

\(\ldots \ c_{N+m} = r^m a_N \ldots \)

\(\text{Note that } a_n \leq c_n \text{ for all } n \text{ by construction} \)

& \(\langle \) (*).

Look @ \(\sum c_n = a_1 + a_2 + \ldots + a_{N-1} + a_N + ra_N + r^2 a_N + \ldots \)

\[= a_1 + a_2 + \ldots + a_{N-1} + a_N \left(1 + r + r^2 + r^3 + \ldots \right) \]

Geometric Series w/ \(a=1 \)
This geometric series \(\sum_{n=0}^{\infty} r^n \) converges b/c \(|r| < 1 \) \(\Rightarrow \sum_{n=0}^{\infty} c_n \) converges.
Therefore, since \(a_n \leq c_n \) all \(n \), \(\sum a_n \) converges by comparison test.

b) \(p > 1 \)
From some index \(M \) & beyond \(\frac{a_{n+1}}{a_n} > 1 \) (all \(n \geq M \)) \& \(a_M < a_{M+1} < a_{M+2} < \ldots \)
\(\Rightarrow \) the terms of the series don't approach zero as \(n \to \infty \). Hence, the series diverges by the nth-Term test.

c)(\(p = 1 \))
First, consider \(\sum_{i=1}^{\infty} \frac{1}{n} \)
\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{n} = \lim_{n \to \infty} \frac{n}{n+1} = 1
\]
By the p-series test \((1 \leq 1) \sum_{i=1}^{\infty} \frac{1}{n} \) diverges.

Second, consider \(\sum_{i=1}^{\infty} \frac{1}{n^2} \)
\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{n} = \lim_{n \to \infty} \frac{n}{n+1} = 1 \]
By the p-series test \((2 > 1) \sum_{i=1}^{\infty} \frac{1}{n^2} \) converges.

Hence, when \(p = 1 \) the series can converge or diverge & you need to another test to determine this.