Math 21D
Vogler
Discussion Sheet 10

1.) Find the area of the following surfaces \(S \), which are directly above the rectangular region \(R \) with vertices \((0,0), (2,0), (2,4), \) and \((0,4)\) in the \(xy \)-plane.
 a.) plane \(z = 5 \)
 b.) plane \(z = 2y \)
 c.) plane \(x + 2y + 3z = 12 \)

2.) Find the area of the following surfaces \(S \), which are directly above the disc \(x^2 + y^2 \leq 9 \) in the \(xy \)-plane.
 a.) top half of sphere \(x^2 + y^2 + z^2 = 64 \)
 b.) paraboloid \(z = x^2 + y^2 + 1 \)
 c.) cone \(z = \sqrt{x^2 + y^2} \)

3.) Let surface \(S \) be the top half of the sphere \(x^2 + y^2 + z^2 = 4 \). Define the following function \(g \) on \(S \): \(g(P) = g(x, y, z) \) is the square of the distance from \(P \) to the \(xy \)-plane. Compute the surface integral of \(g \) over \(S \).

4.) Let surface \(S \) be that portion of the paraboloid \(z = x^2 + y^2 + 4 \) directly above the disc \(x^2 + y^2 \leq 1 \) in the \(xy \)-plane. Let function \(g(x, y, z) = \sqrt{x^2 + y^2} \). Compute the surface integral of \(g \) over \(S \).

5.) Let surface \(S \) be that portion of the paraboloid \(z = 4 - x^2 - y^2 \) cut by the plane \(z = 0 \). Find the Flux of the vector field \(\vec{F}(x, y, z) = (y)\hat{i} + (x)\hat{j} + (z)\hat{k} \) outward through the surface \(S \).

6.) Find the Flux of the vector field \(\vec{F}(x, y, z) = (2x)\hat{i} + (-3y)\hat{j} + (z)\hat{k} \) in the direction away from the origin and across the region \(S \) in the plane \(x + 2y + 3z = 12 \), which is directly above the triangle with vertices \((0,0), (0,2), \) and \((2,6)\) in the \(xy \)-plane.

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

7.) Two bicyclists are twelve miles apart. They begin riding toward each other, one pedaling at 4 mph and the other at 2 mph. At the same time a bumblebee begins flying back and forth between the riders at a constant speed of 10 mph. What is the total distance the bumblebee travels by the time the riders meet?
1.) Compute the divergence of \vec{F} and the curl of \vec{F} for each of the following vector fields.
\[\text{a.) } \vec{F}(x, y, z) = (x^4)\vec{i} + (-x^3z^2)\vec{j} + (4xy^2z)\vec{k} \]
\[\text{b.) } \vec{F}(x, y, z) = (xy\sin z)\vec{i} + (\cos(xz))\vec{j} + (y\cos z)\vec{k} \]

2.) Verify Stoke's Theorem for $\vec{F}(x, y, z) = (y^2)\vec{i} + (x)\vec{j} + (z^2)\vec{k}$, where surface S is that portion of the paraboloid $z = x^2 + y^2$ below the plane $z = 1$.

3.) Use Stoke's Theorem to evaluate $\int \int_S \nabla \times \vec{F} \cdot \vec{n} \ dS$, where $\vec{F}(x, y, z) = (yz)\vec{i} + (xz)\vec{j} + (xy)\vec{k}$ and surface S is that portion of the paraboloid $z = 9 - x^2 - y^2$ above the plane $z = 5$.

4.) Use Stoke's Theorem to evaluate $\oint_C \vec{F} \cdot \vec{T} \ ds$, where $\vec{F}(x, y, z) = (e^{-x})\vec{i} + (e^x)\vec{j} + (e^z)\vec{k}$ and surface S is that portion of the plane $2x + y + 2z = 2$ in the first octant.

5.) Verify the Divergence Theorem for $\vec{F}(x, y, z) = (xy)\vec{i} + (yz)\vec{j} + (xz)\vec{k}$, where the solid D is the cylinder $x^2 + y^2 = 1$ for $0 \leq z \leq 1$.

6.) Use the Divergence Theorem to evaluate $\int \int_S \vec{F} \cdot \vec{n} \ dS$, where $\vec{F}(x, y, z) = (e^x \sin y)\vec{i} + (e^x \cos y)\vec{j} + (yz^2)\vec{k}$ and surface S is the box bounded by the planes $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, and $z = 2$.

7.) Use the Divergence Theorem to evaluate $\int \int \int_D \text{div} \vec{F} \ dV$, where $\vec{F}(x, y, z) = (xe^y)\vec{i} + (xz)\vec{j} + (x \sin z)\vec{k}$ and the solid D is the cube with vertices $(0, 0, 0)$, $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$.

"An individual has not started living until he can rise above the narrow confines of his individualistic concerns to the broader concerns of all humanity." – Martin Luther King, Jr.