Math 16C Vogler Worksheet 11

1.) List the first 5 terms (starting with n = 1) of each sequence. Determine the limit of each sequence or state that the limit does not exist.

a.)
$$a_n = \cos(n\pi)$$

e.)
$$a_n = \sin(\pi/n)$$

b.)
$$a_n = \frac{\cos(n\pi)}{n}$$
 f.) $a_n = n \cdot \sin(1/n)$

f.)
$$a_n = n \cdot \sin(1/n)$$

c.)
$$a_n = n \cdot \cos(n\pi)$$

g.)
$$a_n = \tan((\pi/4) + n(\pi/2))$$

d.)
$$a_n = \sin(n\pi)$$

2.) Determine if each series converges or diverges. Briefly explain and name the test that you are using.

a.)
$$\sum_{n=1}^{\infty} \cos(n\pi)$$

d.)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

b.)
$$\sum_{n=1}^{\infty} \sin((\pi/2) + (1/n))$$
 e.) $\sum_{n=1}^{\infty} \frac{1 - \cos(n\pi)}{n^2}$

$$e.) \sum_{n=1}^{\infty} \frac{1 - \cos(n\pi)}{n^2}$$

c.)
$$\sum_{n=1}^{\infty} \frac{\tan((4n+1)(\pi/4))}{n^3}$$

3.) Determine the degree n of the Taylor polynomial $p_n(x)$ centered at c=0that will estimate the value of the function $f(x) = \ln(1-x)$ with absolute error at most 0.001 on the interval [-1/2, 0].