Differentiation Rules from Math 21A and Trig Identities

1.) $D(e) = 0$
2.) $D(mx + b) = m$
3.) $D(x^n) = nx^{n-1}$
4.) $D(f(x) \pm g(x)) = f'(x) \pm g'(x)$
5.) $D(cf(x)) = cf'(x)$
6.) $D(f(x)g(x)) = f(x)g'(x) + f'(x)g(x)$
7.) $D\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$
8.) $D(e^x) = e^x$
9.) $D(a^x) = a^x \ln a$
10.) $D(\ln x) = \frac{1}{x}$
11.) $D(\log_b x) = \frac{1}{x} \log_b e$
12.) $D(\sin x) = \cos x$
13.) $D(\cos x) = -\sin x$
14.) $D(\tan x) = \sec^2 x$
15.) $D(\cot x) = -\csc^2 x$
16.) $D(\sec x) = \sec x \tan x$
17.) $D(\csc x) = -\csc x \cot x$
18.) $D(\arctan x) = \frac{1}{1 + x^2}$
19.) $D(\arcsin x) = \frac{1}{\sqrt{1 - x^2}}$
20.) $D(\arcsec x) = \frac{1}{|x|\sqrt{x^2 - 1}}$

Trig Identities

1.) $\cos^2 x + \sin^2 x = 1$
2.) $\sin 2x = 2 \sin x \cos x$
3.) $\cos 2x = 2 \cos^2 x - 1$ so that \(\cos^2 x = (1/2)(1 + \cos 2x)\) = 1 - 2\(\sin^2 x\) so that \(\sin^2 x = (1/2)(1 - \cos 2x)\) = \(\cos^2 x - \sin^2 x\)
4.) $1 + \tan^2 x = \sec^2 x$
5.) $1 + \cot^2 x = \csc^2 x$