Math 21B

Vogler

Trig Identities and Antiderivatives

You need NOT memorize identities number 1.) through 4.).

1.)
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

2.)
$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

3.)
$$cos(A+B) = cos A cos B - sin A sin B$$

4.)
$$cos(A - B) = cos A cos B + sin A sin B$$

You MUST memorize the following identities and antiderivatives.

5.)
$$\cos^2 x + \sin^2 x = 1$$

$$6.) \sin 2x = 2\sin x \cos x$$

7.)
$$\cos 2x = 2\cos^2 x - 1$$
 so that $\cos^2 x = \frac{1 + \cos 2x}{2}$
= $1 - 2\sin^2 x$ so that $\sin^2 x = \frac{1 - \cos 2x}{2}$
= $\cos^2 x - \sin^2 x$

8.)
$$1 + \tan^2 x = \sec^2 x$$
 so that $\tan^2 x = \sec^2 x$

8.)
$$1 + \tan^2 x = \sec^2 x$$
 so that $\tan^2 x = \sec^2 x - 1$
9.) $1 + \cot^2 x = \csc^2 x$ so that $\cot^2 x = \csc^2 x - 1$

10.)
$$\int \cos x \, dx = \sin x + C$$
 20.) $\int \frac{1}{1+x^2} \, dx = \arctan x + C$
11.) $\int \sin x \, dx = -\cos x + C$ and $\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan \frac{x}{a} + C$
12.) $\int \sec^2 x \, dx = \tan x + C$ 21.) $\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C$
13.) $\int \csc^2 x \, dx = -\cot x + C$ and $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin \frac{x}{a} + C$

14.)
$$\int \sec x \, \tan x \, dx = \sec x + C$$
 22.)
$$\int \frac{J \sqrt{a^2 - x^2}}{x\sqrt{x^2 - 1}} \, dx = \operatorname{arcsec} |x| + C$$

15.)
$$\int \csc x \cot x \, dx = -\csc x + C \quad \text{and} \quad \int \frac{1}{x\sqrt{x^2 - a^2}} \, dx = \frac{1}{a} \operatorname{arcsec} \left| \frac{x}{a} \right| + C$$

16.)
$$\int \tan x \ dx = \ln|\sec x| + C$$

17.)
$$\int \cot x \ dx = \ln|\sin x| + C$$

18.)
$$\int \sec x \ dx = \ln|\sec x + \tan x| + C$$

19.)
$$\int \csc x \ dx = \ln|\csc x - \cot x| + C$$