Sets on Metric Spaces

Defn. Let $x_0 \in S$ and $r > 0$. The (open) neighborhood around x_0 with radius r, denoted $B_r(x_0)$, is the set

$$B_r(x_0) = \{ x \in S : d(x, x_0) < r \}$$

Notes: 1) Some people refer to this set as an open ball.
2) These neighborhoods, for any $r > 0$, can be viewed as a basis for all open sets (see below) in S and the fundamental open sets in the metric space (S, d).

Defn. Let $E \subseteq S$. An element $x_0 \in E$ is an interior point to E if there exists $r > 0$ such that $B_r(x_0) \subseteq E$. We denote the set of all interior points to E as E^o. The set E is open if every point in E is an interior point (i.e. $E = E^o$).

Proposition (13.7) For any metric space (S, d), we have

1) S is open in S.
2) The empty set \emptyset is open in S.
3) The union of any collection of open sets is open.
4) The intersection of finite many open sets is again an open set.

Note: Any set of points S that satisfies properties (1)-(4) is called a topology, regardless on whether there is a metric on S. Topologies are studied in more detail in Math 197.

Defn. A subset $E \subseteq S$ is closed if its complement $S - E$ is an open set. The closure of $E \subseteq S$, denoted E^\prime, is the intersection of all closed sets containing E. The boundary of $E \subseteq S$, denoted δE, is the set $E^\prime - E^o$ and the points in δE are called boundary points.
Proposition 13.9
Let \(E \subseteq S \). Then, we have

a) \(E \) is closed if and only if \(E = E^- \).

b) \(E \) is closed if and only if it contains the limit of every convergent sequence \(\{s_n\} \) with \(s_n \in E \ \forall n \in \mathbb{N} \).

c) \(x \in E^- \) if and only if \(\exists \{s_n\} \) with \(s_n \in E \ \forall n \in \mathbb{N} \) such that \(\lim_{n \to \infty} s_n = x \).

d) \(x \in \partial E \) if and only if \(x \in E^- \) and \(x \in S - E \).

Note: Some people denote the complement of \(E \) as \(E^c := S - E \).

Thm 13.10
Let \(\{F_k\} \) be a nested sequence of sets (i.e. \(F_k \subseteq F_{k+1} \) \(\forall k \in \mathbb{N} \)) which are all closed bounded nonempty sets of \(\mathbb{R}^n \). Then,
\[
F = \bigcap_{k=1}^{\infty} F_k
\]
is also closed bounded and nonempty.

Defn
A family \(\mathcal{U} \) of open sets is an open cover for a set \(E \subseteq S \) if each point in \(E \) belongs to at least one set in \(\mathcal{U} \) (i.e. \(E \subseteq \bigcup \mathcal{U} \)).

A subcover of \(\mathcal{U} \) is a subfamily of \(\mathcal{U} \) which also covers \(E \).

A cover or subcover is finite if only contains a finite number of sets, each of which may contain an infinite number of points.

A set \(E \) is compact if every open cover of \(E \) has a finite subcover of \(E \).

Proposition 13.13
Every n-cell in \(\mathbb{R}^n \) is compact.

Note: An n-cell \(F \) is an n-dimensional box \(F = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n] \).

In \(\mathbb{R}^2 \) this is just a rectangle.

Heine-Borel Theorem (13.12)
A set \(E \subseteq \mathbb{R}^n \) is compact if and only if it is closed and bounded.

Defn
A set \(E \) in \(\mathbb{R}^n \) is bounded if there exists an \(M > 0 \) where \(\max \{ |x_j| ; j = 1, \ldots, n \} \leq M \) \(\forall x = (x_1, x_2, \ldots, x_n) \in E \).