
Homework 10 Solutions

10.2) Suppose {sn} is a bounded non-increasing sequence. Let ε > 0 be given. Define S = {sn : n ∈ N}.
Since S is bounded, inf S ∈ R exists by a Corollary of the Completeness Axiom. Let l = inf S. Since
l < l + ε and l =inf S, ∃x ∈ S such that x < l + ε, and ∃N ∈ N such that sN = x. Then, we have

l − ε < l ≤ sn ≤ sN < l + ε ∀n > N,

since the sequence is non-increasing. Choose this N . Thus, ∀n > N , then |sn − l| < ε.
Therefore, we conclude lim

n→∞
sn = l = inf S.

10.7) Suppose S is a bounded nonempty subset of R and sup S 6∈ S. Define t = sup S. We are going
to construct the sequence {sn} through construction by induction as follows:

(i) Consider t− 1 < t. Since t = sup S, ∃s1 ∈ S such that t− 1 < s1 < t because t 6∈ S. So s1 exists.

(ii) Let n ∈ N. Suppose that

t− 1

j
< sj < t and sj−1 ≤ sj for j = 1, 2, ..., n

is true (Note: we do not really need this to construct the next sequence element, and it is here for
completeness of the induction hypothesis). Consider m = max {t − 1

n+1 , sn} < t. Since t = sup S,
∃sn+1 ∈ S such that m < sn+1 < t because t 6∈ S. So sn+1 exists with the property

t− 1

n+ 1
< sn+1 < t and sn ≤ sn+1.

Therefore, by the Principle of Complete Induction, we constructed a non-decreasing sequence {sn} with
the property

t− 1

n
< sn < t ∀n ∈ N.

Since lim
n→∞

t− 1

n
= lim

n→∞
t = t, we have lim

n→∞
sn = t = sup S by the Squeeze Theorem.

Therefore, we conclude if S is a bounded nonempty subset of R and sup S 6∈ S, then there exists a
non-decreasing sequence {sn} with sn ∈ S such that lim

n→∞
sn = sup S.

10.9) Let s1 = 1 and sn+1 = n
n+1s

2
n for n ≥ 1 (i.e. a recursion relation).

(a) s1 = 1, s2 = 1
2 , s3 = 1

6 , and s4 = 1
48 .

(b) We can show that the sequence {sn} is bounded between 0 and 1 (i.e. 0 < sn ≤ 1 ∀n ∈ N) by
using induction (optional homework problem). Also, notice we have

sn+1 =
n

n+ 1
s2n < s2n ≤ 1 · sn = sn ∀n ∈ N.
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This gives us sn+1 ≤ sn ∀n ∈ N, and the sequence is monotonically non-increasing. Since {sn} is a
bounded monotone sequence, it must converge by Theorem 10.2.

(c) From part (b), we know the sequence converges. Let s = lim
n→∞

sn. Then, from the recursion

relation, we have

lim
n→∞

sn+1 = lim
n→∞

n

n+ 1
s2n ⇒ s = s2 ⇒ s(s− 1) = 0⇒ s = 1 or s = 0.

Since sn ≤ 1
2 for n ≥ 2 and non-increasing, we must have s ≤ 1

2 , then s = 0.
Therefore, we conclude lim

n→∞
sn = 0
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Worksheet 5 Solutions

1) (a) Suppose lim
n→∞

sn =∞. Let ε > 0 be given. Notice that∣∣∣∣ 1

sn
− 0

∣∣∣∣ = | 1

sn
| = 1

sn

Since lim
n→∞

sn =∞, ∃N ∈ N such that ∀n > N , then sn >
1

ε
, which is equivalent to

∀n > N ⇒ 1

sn
< ε.

Choose this N . Thus, we have

∀n > N ⇒
∣∣∣∣ 1

sn
− 0

∣∣∣∣ =
1

sn
< ε.

Therefore, we conclude lim
n→∞

1

sn
= 0.

(b) Suppose lim
n→∞

1

sn
= 0 and sn > 0 ∀n ∈ N. Let M > 0 be given. Since lim

n→∞
sn = 0, ∃N ∈ N such

that ∀n > N , then |sn − 0| = sn <
1

M
, which is equivalent to

∀n > N ⇒ 1

sn
> M.

Choose this N . Thus, we have

∀n > N ⇒
∣∣∣∣ 1

sn
− 0

∣∣∣∣ =
1

sn
> M.

Therefore, we conclude lim
n→∞

1

sn
=∞.

2) Let s1 =
√

5 and sn+1 =
√

5 + sn for n ≥ 1 (i.e. a recursion relation).

(a) First, we show {sn} is bounded between 0 and 3 with induction:

(i) This is true for n = 1, since 0 <
√

5 <
√

9 = 3.

(ii) Let n ∈ N. Suppose that 0 < sn < 3 is true. Then, we have

0 < sn+1 =
√

5 + sn <
√

5 + 3 <
√

9 = 3

So the statement is true for n+ 1.
Thus, by the Principle of Mathematical Induction, we have 0 < sn < 3 ∀n ∈ N, and the sequence is

bounded.
Second, we show sn ≤ sn+1 ∀n ∈ N (i.e. sequence is non-decreasing) by induction:
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(i) This is true for n = 1, since s1 =
√

5 <
√

5 +
√

5 = s2.

(ii) Let n ∈ N. Suppose that sn ≤ sn+1 is true. Then, we have 5 + sn ≤ 5 + sn+1, so

sn+1 =
√

5 + sn ≤
√

5 + sn+1 = sn+2.

So the statement is true for n+ 1.
Thus, by the Principle of Mathematical Induction, we have sn ≤ sn+1 ∀n ∈ N, and the sequence is

monotonically non-decreasing.
Therefore, {sn} is a bounded monotone sequence, and we conclude it must converge by Theorem 10.2.

(b) From part (a), we know the sequence converges. Let s = lim
n→∞

sn. Then, from the recursion

relation, we have

lim
n→∞

sn+1 = lim
n→∞

√
5 + sn ⇒ s =

√
s+ 5⇒ s2 − s− 5 = 0⇒ s =

1±
√

21

2
.

Since sn > 0 ∀n ∈ N and the sequence is non-decreasing, we must have s > 0, then s =
1 +
√

21

2
.

Therefore, we conclude lim
n→∞

sn =
1 +
√

21

2
.

3) Let s1 = 2 and sn+1 = 1
4sn + 15 for n ≥ 1 (i.e. a recursion relation).

(a) First, we show {sn} is bounded between 0 and 20 with induction:

(i) This is true for n = 1, since 0 < s1 = 2 < 20.

(ii) Let n ∈ N. Suppose that 0 < sn < 20 is true. Then, we have

0 < sn+1 =
1

4
sn + 15 <

1

4
(20) + 15 = 20

So the statement is true for n+ 1.
Thus, by the Principle of Mathematical Induction, we have 0 < sn < 20 ∀n ∈ N, and the sequence is

bounded.
Second, we show sn ≤ sn+1 ∀n ∈ N (i.e. sequence is non-decreasing) by induction:

(i) This is true for n = 1, since s1 = 2 < 1
2 + 15 = s2.

(ii) Let n ∈ N. Suppose that sn ≤ sn+1 is true. Then, through algebraic manipulation we have

sn+1 =
1

4
sn + 15 ≤ 1

4
sn+1 + 15 = sn+2.

So the statement is true for n+ 1.
Thus, by the Principle of Mathematical Induction, we have sn ≤ sn+1 ∀n ∈ N, and the sequence is

monotonically non-decreasing.
Therefore, {sn} is a bounded monotone sequence, and we conclude it must converge by Theorem 10.2.
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(b) From part (a), we know the sequence converges. Let s = lim
n→∞

sn. Then, from the recursion

relation, we have

lim
n→∞

sn+1 = lim
n→∞

1

4
sn + 15⇒ s =

1

4
s+ 15⇒ s = 20.

Therefore, we conclude lim
n→∞

sn = 20.
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