
Homework 11 Solutions

10.3) Suppose we are given a decimal expansion k.d1d2d3d4..., where k is a nonnegative integer and
dj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ∀j ∈ N. Define the corresponding sequence as

sn = k +
d1
10

+
d2
102

+ ...+
dn
10n

.

Fix n ∈ N. So, we have

sn = k +
d1
10

+
d2
102

+ ...+
dn
10n
≤ k +

9

10
+

9

102
+ ...+

9

10n
= k + 1− 1

10n
< k + 1,

because of the formula given in the Hint. Since n ∈ N was arbitrary, we conclude sn < k + 1 ∀n ∈ N.

For the next problem, we need the following fact, which is used in developing the Geometric Series
formula (See Example 1 in Section 14):

Proposition 1. For n ∈ N and a, r ∈ R with r 6= 1, we have the following formula

a(1 + r + r2 + ...+ rn) = a

(
1− rn+1

1− r

)
.

Notice that the Hint in the above problem (10.3) uses this fact.

10.6) (a) Suppose {sn} is a sequence with |sn+1 − sn| < 2−n ∀n ∈ N. Before we start proving the
sequence is Cauchy, we need to get an inequality of only one index n. Notice for m,n ∈ N with m > n, we
have by repeated addition by zero (in a bunch of ’clever’ disguises)

|sm − sn| = |sm − sm−1 + sm−1 − sm−2 + sm−2 − sm−3 + ...+ sn+1 − sn|

Then, using the triangle inequality many times, we get

|sm − sn| ≤ |sm − sm−1|+ |sm−1 − sm−2|...+ |sn+1 − sn| <
1

2m−1
+

1

2m−2
+ ...+

1

2n+1
+

1

2n
.

Through algebraic manipulation and using Proposition 1 results in

|sm − sn| <
1

2n

(
1 +

1

2
+

(
1

2

)2

+ ...+

(
1

2

)m−n−2
+

(
1

2

)m−n−1
)

=
1

2n

(
1−

(
1
2

)m−n
1− 1

2

)
=

1

2n−1
− 1

2m−1
.

Finally, we can obtain the following inequality which will be used to prove the sequence is Cauchy

|sm − sn| <
1

2n−1
− 1

2m−1
<

1

2n−1
,

since m > n.
Since n,m ∈ N with m > n was arbitrary, we have the following

|sm − sn| <
1

2n−1
∀n,m ∈ N with m > n. (1)
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Now we move on to proving the sequence is Cauchy. Let ε > 0 be given. Since lim
n→∞

1

2n−1
= 0, ∃N ∈ R

such that ∀n > N , then

∣∣∣∣ 1

2n−1
− 0

∣∣∣∣ < ε. We choose this N . Without loss of generality we assume m > n

(otherwise, you just switch the indices). Thus, ∀m,n > N , then |sm − sn| <
1

2n−1
< ε by equation (1)

since m > n.
Therefore, we conclude the sequence is Cauchy and must converge by Theorem 10.11.

(b) No. Consider the sequence sn = lnn. Clearly, |sn+1−sn| = lnn+ 1−lnn = ln
(
1 + 1

n

)
< 1

n ∀n ∈ N,
but lim

n→∞
lnn =∞. Since sequence diverges, it cannot be Cauchy by Theorem 10.11.

10.10) Let s1 = 1 and sn+1 = 1
3(sn + 1) for n ≥ 1 (i.e. a recursion relation).

(a) s1 = 1, s2 = 2
3 , s3 = 5

9 , and s4 = 14
27 .

(b) First, we show {sn} is bounded below by 1
2 with induction:

(i) This is true for n = 1, since 1
2 < s1 = 1.

(ii) Let n ∈ N. Suppose that sn >
1
2 is true. Then, we have

sn+1 =
1

3
(sn + 1) >

1

3

(
1

2
+ 1

)
=

1

2
.

So the statement is true for n+ 1.
Thus, by the Principle of Mathematical Induction, we conclude 1

2 < sn ∀n ∈ N, and the sequence is
bounded below.

(c) Second, we show sn ≥ sn+1 ∀n ∈ N (i.e. sequence is non-increasing) by induction:

(i) This is true for n = 1, since s1 = 1 < 2
3 = s2.

(ii) Let n ∈ N. Suppose that sn ≥ sn+1 is true. Then, we have

sn+1 =
1

3
(sn + 1) ≥ 1

3
(sn+1 + 1) = sn+2.

So the statement is true for n+ 1.
Thus, by the Principle of Mathematical Induction, we conclude sn ≥ sn+1 ∀n ∈ N, and the sequence is

monotonically non-increasing.

(d) By parts (b) and (c) we know {sn} is a bounded monotone sequence, and we conclude it must
converge by Theorem 10.2.

Since we know the sequence converges. Let s = lim
n→∞

sn. Then, from the recursion relation, we have

lim
n→∞

sn+1 = lim
n→∞

1

3
(sn + 1)⇒ s =

1

3
(s+ 1)⇒ 3s = s+ 1⇒ s =

1

2
.
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Therefore, we also conclude lim
n→∞

sn =
1

2
.

10.11) Let t1 = 1 and tn+1 =

(
1− 1

4n2

)
t2n for n ≥ 1 (i.e. a recursion relation).

(a) First, notice {tn} is non-increasing since

tn+1 =

(
1− 1

4n2

)
t2n < 1 · tn = tn ∀n ∈ N.

Also, this shows that the sequence is bounded above by 1, since t1 = 1. Second, we show {tn} is bounded
below by 0 with induction:

(i) This is true for n = 1, since 0 < 1 = t1.

(ii) Let n ∈ N. Suppose that 0 < tn is true. Then, we have

4n2 > 1⇒ 1

4n2
< 1⇒ 1− 1

4n2
> 0⇒ tn+1 =

(
1− 1

4n2

)
t2n > 0.

So the statement is true for n+ 1.
Thus, by the Principle of Mathematical Induction, we have 0 < tn ∀n ∈ N, and the sequence is

bounded.
Therefore, {tn} is a bounded monotone sequence, and we conclude it must converge by Theorem 10.2.
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Worksheet 5 Solutions

4) Suppose lim
n→∞

sn = s and lim
n→∞

tn = t with sn > 0 ∀n ∈ N and s > 0. Then, we have the following

lim
n→∞

stnn = lim
n→∞

etn ln sn = elimn→∞ tn ln sn ,

by Problem Sheet 4.2 since f(x) = ex is continuous. Continuing using Theorem 9.4, we have

elimn→∞ tn ln sn = e(limn→∞ tn)(limn→∞ ln sn) = et ln s,

by Problem Sheet 4.2 since f(x) = lnx is continuous. Finally, we get

lim
n→∞

stnn = et ln s = st,

and we conclude if lim
n→∞

sn = s and lim
n→∞

tn = t with sn > 0 ∀n ∈ N and s > 0, then lim
n→∞

stnn = st.

5) Suppose E is nonempty subset of R which is bounded below, and define L = {l ∈ R : l is a lower bound for E}.

(a) If l ∈ L, the l ≤ e ∀e ∈ E. Therefore, any e ∈ E is an upper bound for L, and sup L ∈ R exists by
the Completeness Axiom.

(b) Since ∀e ∈ E is an upper bound for L, sup L ≤ e ∀e ∈ E. Therefore, sup L is a lower bound for E.
Since l ≤ sup L ∀l ∈ L, we have sup L = inf E by definition.

Remark: This is an alternate proof of Corollary 4.5 of the Completeness Axiom.
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