Homework 11 Solutions

10.3) Suppose we are given a decimal expansion k.djdedsdy..., where k is a nonnegative integer and
d; €{0,1,2,3,4,5,6,7,8,9} Vj € N. Define the corresponding sequence as

di dy d,
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Fix n € N. So, we have
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because of the formula given in the Hint. Since n € N was arbitrary, we conclude s, < k+1 Vn € N.

For the next problem, we need the following fact, which is used in developing the Geometric Series
formula (See Example 1 in Section 14):

Proposition 1. Forn € N and a,r € R with r # 1, we have the following formula

1— n+1
a(1+r+r2+...+r"):a<lr>.
—r

Notice that the Hint in the above problem (10.3) uses this fact.

10.6) (a) Suppose {s,} is a sequence with |sp41 — sp| < 27" ¥n € N. Before we start proving the
sequence is Cauchy, we need to get an inequality of only one index n. Notice for m,n € N with m > n, we
have by repeated addition by zero (in a bunch of ’clever’ disguises)

|5m - 3n| = |5m — Sm—1+Sm—1—Sm—2+ Sm—2 — Sm—3 + ... + Snt+1 — 3n|

Then, using the triangle inequality many times, we get

1 1 1

+ ..+ +

’3m_5n‘ < ‘Sm_sm—1’+|3m—1_Sm—2’--~+’3n+1_sn‘ < — + W 27

2m—1 2m—2

Through algebraic manipulation and using Proposition 1 results in

2 —n—2 —n—1 1\m—n
|s —s‘<i 1_|_1_|_ 1 4o+ lmn + lmn _i 1_(5) 1 _ 1

Finally, we can obtain the following inequality which will be used to prove the sequence is Cauchy

1 1 1
on—1 B oam—1 < 2n—1’

|Sm — sn| <

since m > n.
Since n, m € N with m > n was arbitrary, we have the following

1
]sm—$n|<2n—_1 Vn,m € N with m > n. (1)



1
Now we move on to proving the sequence is Cauchy. Let € > 0 be given. Since lim on 1 = 0,dN e R
n—oo

such that ¥n > N, then — 0| < e. We choose this N. Without loss of generality we assume m > n

n—1

(otherwise, you just switch the indices). Thus, Vm,n > N, then |s,, — s,| < < € by equation (1)

2n—1
since m > n.

Therefore, we conclude the sequence is Cauchy and must converge by Theorem 10.11.

(b) No. Consider the sequence s, = Inn. Clearly, [sy11—sp| =Inn+1-Inn=In(1+ 1) <1 vneN,

but li_>m Inn = oo. Since sequence diverges, it cannot be Cauchy by Theorem 10.11.
n—oo

10.10) Let s; =1 and sp41 = 3(sp + 1) for n > 1 (i.e. a recursion relation).

14

,and sq = o=

Nelldz}

(a') 51:1a82:%a83:
(b) First, we show {s,} is bounded below by 3 with induction:
(i) This is true for n = 1, since § < s; = 1.

(ii) Let n € N. Suppose that s,, > 3 is true. Then, we have

—1( +1)>1 L) =t
5n+1—35n 3\ 9 9

So the statement is true for n 4 1.

Thus, by the Principle of Mathematical Induction, we conclude % < sp, Vn € N, and the sequence is
bounded below.

(c) Second, we show s, > s,+1 Vn € N (i.e. sequence is non-increasing) by induction:

(i) This is true for n =1, since s; =1 < 2 = sy.

(ii) Let n € N. Suppose that s, > s,41 is true. Then, we have

1
Sn4+1 = *(sn + 1) >

3 (3n+1 + 1) = Sp42-

Lo =

So the statement is true for n + 1.
Thus, by the Principle of Mathematical Induction, we conclude s, > s,1+1 Vn € N, and the sequence is
monotonically non-increasing.

(d) By parts (b) and (c) we know {s,} is a bounded monotone sequence, and we conclude it must
converge by Theorem 10.2.

Since we know the sequence converges. Let s = lim s,. Then, from the recursion relation, we have
n—oo

li =1l L 1 1 1 35 = 1 !
Jim sy = lim §(8"+ ):>s—§(s+ )=3s=s+ = s=3.



Therefore, we also conclude lim s, = —.
n—00 2

1
10.11) Let t; =1 and t,4;1 = (1 - 4712> t2 for n > 1 (i.e. a recursion relation).

(a) First, notice {¢,} is non-increasing since

1

Also, this shows that the sequence is bounded above by 1, since t; = 1. Second, we show {t,} is bounded
below by 0 with induction:

(i) This is true for n =1, since 0 < 1 = ¢;.

(ii) Let n € N. Suppose that 0 < t,, is true. Then, we have

1 1 1
4n2>1:>4nQ<1:>1—4712>0:>tn+1:<1—4n2>t721>0.

So the statement is true for n + 1.
Thus, by the Principle of Mathematical Induction, we have 0 < ¢, Vn € N, and the sequence is
bounded.

Therefore, {t,} is a bounded monotone sequence, and we conclude it must converge by Theorem 10.2.
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4) Suppose lim s, =s and lim ¢, =t with s, > 0Vn € N and s > 0. Then, we have the following
n—0o0 n—o0

lim St" — lim etn In sy — elimnﬁoo tnln sy
n—00 n—00

)

by Problem Sheet 4.2 since f(x) = e® is continuous. Continuing using Theorem 9.4, we have

limpsootnlns, — (limpseo tn)(limpseolnsy,) _ tlns
e =e =e'Mm7,

by Problem Sheet 4.2 since f(x) = Inz is continuous. Finally, we get

. tn _ tlns __ _t
Jm ol =ttt =,

and we conclude if lim s, = s and lim ¢, =t with s, >0Vn € N and s > 0, then lim st" = s’
n—o0

n—o0 n—o0

5) Suppose E is nonempty subset of R which is bounded below, and define L = {l € R : [ is a lower bound for E}.

(a) If I € L, the | < e Ve € E. Therefore, any e € E is an upper bound for L, and sup L € R exists by
the Completeness Axiom.

(b) Since Ve € E is an upper bound for L, sup L < e Ve € E. Therefore, sup L is a lower bound for E.
Since | < sup L VI € L, we have sup L = inf F by definition.

Remark: This is an alternate proof of Corollary 4.5 of the Completeness Axiom.



