
Homework 13 Solutions

For the next problem, we need the following fact which is the result of Exercise 5.4 (an optional
homework problem) :

Proposition 1. Let S ⊂ R be nonempty. Define S− := {−s : s ∈ S}. Then inf S = −sup S−.

11.8) Suppose we have a sequence {sn}. We define the set of terms in the sequence as E := {sn : n ∈ N}.
We consider two cases: (1) E is bounded below or (2) E is not bounded below.

For case (1), suppose E is bounded below. For any N ∈ N, define EN := {sn : n > N} and E−N :=
{−sn : n > N}. Then by definition, we have

lim inf
n→∞

sn := lim
N→∞

inf EN = lim
N→∞

−sup E−N ,

using Proposition 1. By definition again, we continue further obtain

lim inf
n→∞

sn := lim
N→∞

inf EN = lim
N→∞

−sup E−N = − lim
N→∞

sup E−N =: − lim sup
n→∞

−sn.

Thus, for this case we have
lim inf
n→∞

sn = − lim sup
n→∞

−sn.

For case (1), suppose E is not bounded below. Then, the corresponding sequence {sn} is not bounded
below too, and consequently the sequence {−sn} is not bounded above. Hence, we have

lim inf
n→∞

sn = −∞ = − lim sup
n→∞

−sn.

Therefore, we conclude
lim inf
n→∞

sn = − lim sup
n→∞

−sn.

11.11) Suppose S is a bounded nonempty set of R. By the Completeness Axiom, sup S ∈ R exists.
Define L := sup S. There are two cases to consider: (1) L ∈ S or (2) L 6∈ S.

For case (1), if L ∈ S (i.e. L is a maximum), we can easily build a monotone sequence that converges
to L by defining sn = L ∀n ∈ N, and we are done.

For case (2), suppose L 6∈ S. We are going to construct a non-decreasing (or increasing) sequence {sn}
of points in S (i.e. sn ∈ S ∀n ∈ N) such that limn→∞ sn = L through construction by induction as follows:

(i) Consider L − 1 < L. Since L = sup S, ∃s1 ∈ S such that L − 1 < s1 < L because L 6∈ S. So s1
exists.

(ii) Let n ∈ N. Suppose that

L− 1

j
< sj < L and sj−1 ≤ sj for j = 1, 2, ..., n
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is true (Note: we do not really need this to construct the next sequence element, and it is here for
completeness of the induction hypothesis). Consider m = max {L − 1

n+1 , sn} < L. Since L = sup S,
∃sn+1 ∈ S such that m < sn+1 < L because L 6∈ S. So sn+1 exists with the property

L− 1

n+ 1
< sn+1 < L and sn ≤ sn+1.

Therefore, by the Principle of Complete Induction, we constructed a non-decreasing (or increasing)
sequence {sn} with the property

L− 1

n
< sn < L ∀n ∈ N.

Since lim
n→∞

L− 1

n
= lim

n→∞
L = L, we have lim

n→∞
sn = t = L = sup S by the Squeeze Theorem.

Therefore, we conclude if S is a bounded nonempty subset of R, then there exists a non-decreasing
sequence {sn} with sn ∈ S ∀n ∈ N such that lim

n→∞
sn = sup S.
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Worksheet 6 Solutions

For the next problem, we need the following inequality:

Proposition 2.
1

m2
≤ 1

m(m− 1)
=

1

m− 1
− 1

m
for m ≥ 2.

2) Let

sn =
1

12
+

1

22
+

1

32
+ ...+

1

n2
∀n ∈ N.

First notice that the sequence {sn} is clearly non-decreasing (or increasing). By repeated use of Proposition
2, we have the following inequality

sn =
1

12
+

1

22
+

1

32
+...+

1

n2
≤ 1+

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+...+

(
1

n− 1
− 1

n

)
= 2− 1

n
< 2 ∀n ∈ N,

where a huge amount of cancellation occurs because it’s a telescoping sum. So, the sequence is also
bounded.

Therefore, we conclude {sn} converges by Theorem 10.2 (which some people call the Monotone Con-
vergence Theorem).

Remark: The is a proof that the series
∑∞

n=1
1
n1 converges.

3) (a) Let

sn =
1

1!
+

1

2!
− 1

3!
+

1

4!
+

1

5!
− 1

6!
+ ...+

k(n)

n!
with k(n) =

1

3

(
4 cos

(
(2n− 3)π

3

)
+ 1

)
∀n ∈ N.

Since all but the last term cancels out, we obtain

|sn+1 − sn| =
∣∣∣∣± 1

(n+ 1)!

∣∣∣∣ =
1

(n+ 1)!
≤ 1

2n
∀n ∈ N,

because (n + 1)! = (n + 1) · n · (n − 1) · ... · 2 · 1 ≥ 2 · 2 · 2 · ... · 2 · 1 = 2n. Therefore, we conclude that
|sn+1 − sn| ∀n ∈ N.

(b) By Homework 10.6 (a), we conclude that {sn} is a Cauchy sequence. Also, {sn} converges by
Theorem 10.11.
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