Homework 19 Solutions

13.1) For the following problem, let Z, ¥, 2 € R".

Consider the metric di(¥,y) :== max {\xj —y;|}-
j=

b 7

(i) We have dy(%, %) := max {lz; — x3|} = 0. Also, if ¥ # ¢/, then there exists

—1,..

j such that z; # y;, and consequently, |z; — y;| > 0 because (R, |- |) is a metric
space. Therefore, di(Z, ) := max {lxj —y;|} > 0.
j

AR

(ii) It’s clear that

(@, 7) 1= max {Jo; — g} = max {Jy; — a5} = (7.7,

(iii) Fix j = 1,...,n. Then, we have
) — 2l = | — i+ — 2zl <oy =yl + ly; — 2]

by the Triangle Inequality in R. Taking the maximum over 7 = 1,...,n of both
sides gives us

di(Z,7) == Eax {|$,7 - Z]‘} < jrr%ax {‘xj yj| + |yj - ZJ‘} (1)
< mx (-l + max (- 5} = WED 4G @

where we used the definition of the metric on both sides of the inequality.
Therefore, we conclude di(Z,7) is a metric, and the pair (R" d;) is a metric
space.

Now, consider the metric dy(Z, §) := Z lz; — yjl.

j=1
n

(1) We have dy(Z, 7)) := Z |z; — ;| = 0. Also, if ¥ # ¢/, then there exists j such
j=1
that x; # y;, and consequently, |z; — y;| > 0 because (R, |- |) is a metric space.
Therefore, do(Z, y) := Z lz; —y,| > 0.

J=1



(ii) It’s clear that

n n
do(T,§) =) |y =yl = Y |y — x| =2 da(7, ).
j=1 j=1

(iii) Fix j = 1,...,n. Then, we have

25 — 2| = |zj —y; +y; — 2| <oy —y;l + ly; — 2

by the Triangle Inequality in R. Taking the sum over 5 = 1,...,n of both sides
gives us

do(Z,2) = |wj— 2| <Y (lz —yil + |y — 1) (3)
j=1 j=1

=l =yl + Dy — 2| = da(T,4) + dao(F, 2), (4)
j=1

J=1

where we used the definition of the metric on both sides of the inequality and the
fact that this is a finite sum to ’distribute’ the summation.

Therefore, we conclude do(Z,7) is a metric, and the pair (R",dy) is a metric
space.

(b) Before we start this problem we need a couple of facts, the proof of the first
is an optional homework problem

Proposition 1. Let ©,y € R". For any j = 1,...,n, the following inequality holds

2 =yl < di(T,5) < d(Z,7) < max {Ja; —y;[}

where the metrics di and do are defined above.

Proposition 2. Let {Z};} be a sequence is R". If each coordinate sequence {xy ;}

( = 1,...n) converges in the metric space (R, |-|), then the sequence {Z}} converges
in both (R",dy) and (R",dy), where the metrics di and dy are defined above..

Proof of Proposition 2: Let {Z;} be a sequence is R". Suppose each coor-
dinate sequence {zj;} converges to {z;} for j = 1,..n. Consider the point

2



—

T = (r1,%9,...,x,) € R" (which is the point we will converge to). Let ¢ > 0

be given. For each j = 1,...n, since klim xy; = xj, AN; € R such that
—00

€
vk > Nj = \x;m» — 37]" < —.
n
Choose N := max{Ny, ..., N, }. Thus, using Proposition 1 we have
€

Vk > N = di (7, 7) < do( T, @) <m0 max {lzj —y;|} <n—=e
J=1,....n n

Therefore, we conclude that if each coordinate sequence {zy;} (j 1,..n)

converges, then the sequence {Z}} converges in both (R",d;) and (R",d5).

Proof of 13.1b: Consider the metric space (R",d;) where the metric is defined
above. Suppose the sequence {Z}} is Cauchy in this metric space. Let € > 0 be
given. Since {Z}} is Cauchy, 3N € R such that

Vk,m > N = dy (T, Zp) < €. (5)

Let j = 1,...,n be fixed, and consider the coordinate sequence {zj ;}. Choose
N given above. Thus, using Proposition 1 and (5) we have

Vk,m > N = |z — T j| < di(Th, Tn) < €

Hence, the coordinate sequence {zj;} is a Cauchy sequence in (R,| - |) and is
also a convergent sequence since (R, |- |) is complete by Theorem 10.11. Let

lim 3 ; = z; € R.
k—o0

Since 7 = 1,...,n was arbitrary, all coordinate sequences {xj;} converges to
some z; € R. By Proposition 2, the sequence {Z}} converges in (R",d;). Since
{Zx} was an arbitrary Cauchy sequence, we have if {Z}} is Cauchy in this metric
space, then it converges as well. Therefore, we conclude the metric space (R", d;)
is complete

Note: To show (R",dy) is complete, the same exact proof applies where you
replace d; with ds.

13.2) (a) Let Z, 3y € R". Consider the metric space (R",d) with

n

A@, ) = | S — i)

1=1
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We focus our attention on the first inequality. Fix j = 1,...,n. Clearly, we have

=il =\ — )2 < (D (@i — i)? = d(E,7)

i=1
Since j = 1,...,n was arbitrary, we conclude

proving the first inequality.
Now we prove the second inequality. For j = 1,...,n, we have

(2 = y5) < max {|a; —yil} = (zj — y;)’ < max {[a; — yil*}.

- 7"'7n — Ly
Summing over all j = 1,...,n, we obtain

> (@ =) < max {|r; —yl*}

—1,...

j=1

Finally, taking the square root of both side of the equation (this can be done since
the square root function is increasing and ’preserves’ inequalities), we get

>t~ < f e o~ Y = Vi s (e~ ).

7=1

and we conclude

A(E,§) < Vi max {Ja; — i},

proving the second inequality.

(b) (=) Suppose the sequence {Z)} converges to ¥ in R". Let ¢ > 0 be given.
Since klim T = @, AN € R such that
—00

Vk > N = d(7}, ) < e. (6)

Fix j = 1,...,n and consider the coordinate sequence {zj ;}. Choose this N given
above. Then, by (6) and Homework 13.2a we have

Vk > N = |z, — ;| < d(Tg, %) < e



Hence, this coordinate sequence converges to z; € R. Since j = 1,...,n was arbi-
trary, each coordinate sequence of {Z)} converges in R. Therefore, we conclude,
if the sequence {Z}} converges in R", then each j = 1,...,n coordinate sequence
{zk;} converges in R.

(<) Let {Z%} be a sequence is R". Suppose each coordinate sequence {zj ;}
converges to {z;} € R for j = 1,...n. Consider the point ¥ := (x1,x9,...,z,) € R"
(which is the point we will converge to). Let € > 0 be given. For each j = 1,...n,

since lim zy; = x;, 3N; € R such that
k—o0

€
vn
Choose N := max{Njy, ..., N,}. Thus, using Homework 13.2a we have

vk > Nj = ‘.I/ﬁj — SL’]" <

— €.

Yk > N = d(Z, %) < vn max {|z; — yi|} < Vi—

7j=1,...n \/ﬁ

Therefore, we conclude that if each coordinate sequence {z;;} (j = 1,..n)
converges in R, then the sequence {Z}} converges in R".

13.3) (a) Let B = {{zx} : {z1} is bounded} (note that ¥ € B can be viewed as
a vector with an infinite number of terms, i.e ¥ := (1,29, ..., Tk, ...)), and define
the metric

d(Z,y) = sup{|z; — y;|}.
jEN
Let Z,y,7 € B.

(i) We have d(7, ¥) := sup{|z; — z;|} = 0. Also, if & # ¢/, then there exists j € N
jeN
such that ; # y;, and consequently, |z; —y;| > 0 because (R, |-|) is a metric space.
Therefore, d(Z,y) := sup{|z; — y;|} > 0.
jeN
(ii) It’s clear that

d(7,y) := sup{|z; — y;|} = sup{ly; — z;|} = d(¥, 7).
JEN jEN

(iii) Fix j € N. Then, we have
25 — 2| = |zj —y; +y; — 2| <z —y;l + ly; — 2
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by the Triangle Inequality in R. Hence, we see
|25 — 2| <oy —yil+1y; — 2] VieN

Taking the supremum over j € N of both sides gives us

d(7, 2) := sup{|z; — 2|} <sup{|lz; —y;| + |y; — 2} (7)
JEN jEN
< sup{|z; — y;|} +sup{ly; — 2|} = d(Z, %) +d(¥, 2), (8)
J€EN J€N

where we used the definition of the metric on both sides of the inequality.
Therefore, we conclude d(Z, %) is a metric, and the pair (B, d) is a metric space.



