
Homework 19 Solutions

13.1) For the following problem, let ~x, ~y, ~z ∈ Rn.

Consider the metric d1(~x, ~y) := max
j=1,...,n

{|xj − yj|}.
(i) We have d1(~x, ~x) := max

j=1,...,n
{|xj − xj|} = 0. Also, if ~x 6= ~y, then there exists

j such that xj 6= yj, and consequently, |xj − yj| > 0 because (R, | · |) is a metric
space. Therefore, d1(~x, ~y) := max

j=1,...,n
{|xj − yj|} > 0.

(ii) It’s clear that

d1(~x, ~y) := max
j=1,...,n

{|xj − yj|} = max
j=1,...,n

{|yj − xj|} =: d1(~y, ~x).

(iii) Fix j = 1, ..., n. Then, we have

|xj − zj| = |xj − yj + yj − zj| ≤ |xj − yj|+ |yj − zj|

by the Triangle Inequality in R. Taking the maximum over j = 1, ..., n of both
sides gives us

d1(~x, ~z) := max
j=1,...,n

{|xj − zj|} ≤ max
j=1,...,n

{|xj − yj|+ |yj − zj|} (1)

≤ max
j=1,...,n

{|xj − yj|}+ max
j=1,...,n

{|yj − zj|} =: d1(~x, ~y) + d1(~y, ~z), (2)

where we used the definition of the metric on both sides of the inequality.
Therefore, we conclude d1(~x, ~y) is a metric, and the pair (Rn, d1) is a metric

space.

Now, consider the metric d2(~x, ~y) :=
n∑

j=1

|xj − yj|.

(i) We have d2(~x, ~x) :=
n∑

j=1

|xj − xj| = 0. Also, if ~x 6= ~y, then there exists j such

that xj 6= yj, and consequently, |xj − yj| > 0 because (R, | · |) is a metric space.

Therefore, d2(~x, ~y) :=
n∑

j=1

|xj − yj| > 0.
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(ii) It’s clear that

d2(~x, ~y) :=
n∑

j=1

|xj − yj| =
n∑

j=1

|yj − xj| =: d2(~y, ~x).

(iii) Fix j = 1, ..., n. Then, we have

|xj − zj| = |xj − yj + yj − zj| ≤ |xj − yj|+ |yj − zj|

by the Triangle Inequality in R. Taking the sum over j = 1, ..., n of both sides
gives us

d2(~x, ~z) :=
n∑

j=1

|xj − zj| ≤
n∑

j=1

(|xj − yj|+ |yj − zj|) (3)

=
n∑

j=1

|xj − yj|+
n∑

j=1

|yj − zj| =: d2(~x, ~y) + d2(~y, ~z), (4)

where we used the definition of the metric on both sides of the inequality and the
fact that this is a finite sum to ’distribute’ the summation.

Therefore, we conclude d2(~x, ~y) is a metric, and the pair (Rn, d2) is a metric
space.

(b) Before we start this problem we need a couple of facts, the proof of the first
is an optional homework problem

Proposition 1. Let ~x, ~y ∈ Rn. For any j = 1, ..., n, the following inequality holds

|xj − yj| ≤ d1(~x, ~y) ≤ d2(~x, ~y) ≤ n max
j=1,...,n

{|xj − yj|}

where the metrics d1 and d2 are defined above.

Proposition 2. Let {~xk} be a sequence is Rn. If each coordinate sequence {xk,j}
(j = 1, ...n) converges in the metric space (R, | · |), then the sequence {~xk} converges
in both (Rn, d1) and (Rn, d2), where the metrics d1 and d2 are defined above..

Proof of Proposition 2: Let {~xk} be a sequence is Rn. Suppose each coor-
dinate sequence {xk,j} converges to {xj} for j = 1, ...n. Consider the point
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~x := (x1, x2, ..., xn) ∈ Rn (which is the point we will converge to). Let ε > 0
be given. For each j = 1, ...n, since lim

k→∞
xk,j = xj, ∃Nj ∈ R such that

∀k > Nj ⇒ |xk,j − xj| <
ε

n
.

Choose N := max{N1, ..., Nn}. Thus, using Proposition 1 we have

∀k > N ⇒ d1(~xk, ~x) ≤ d2(~xk, ~x) ≤ n max
j=1,...,n

{|xj − yj|} < n
ε

n
= ε.

Therefore, we conclude that if each coordinate sequence {xk,j} (j = 1, ...n)
converges, then the sequence {~xk} converges in both (Rn, d1) and (Rn, d2).

Proof of 13.1b: Consider the metric space (Rn, d1) where the metric is defined
above. Suppose the sequence {~xk} is Cauchy in this metric space. Let ε > 0 be
given. Since {~xk} is Cauchy, ∃N ∈ R such that

∀k,m > N ⇒ d1(~xk, ~xm) < ε. (5)

Let j = 1, ..., n be fixed, and consider the coordinate sequence {xk,j}. Choose
N given above. Thus, using Proposition 1 and (5) we have

∀k,m > N ⇒ |xk,j − xm,j| < d1(~xk, ~xm) < ε.

Hence, the coordinate sequence {xk,j} is a Cauchy sequence in (R, | · |) and is
also a convergent sequence since (R, | · |) is complete by Theorem 10.11. Let
lim
k→∞

xk,j = xj ∈ R.

Since j = 1, ..., n was arbitrary, all coordinate sequences {xk,j} converges to
some xj ∈ R. By Proposition 2, the sequence {~xk} converges in (Rn, d1). Since
{~xk} was an arbitrary Cauchy sequence, we have if {~xk} is Cauchy in this metric
space, then it converges as well. Therefore, we conclude the metric space (Rn, d1)
is complete

Note: To show (Rn, d2) is complete, the same exact proof applies where you
replace d1 with d2.

13.2) (a) Let ~x, ~y ∈ Rn. Consider the metric space (Rn, d) with

d(~x, ~y) :=

√√√√ n∑
i=1

(xi − yi)2.
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We focus our attention on the first inequality. Fix j = 1, ..., n. Clearly, we have

|xj − yj| =
√

(xj − yj)2 ≤

√√√√ n∑
i=1

(xi − yi)2 =: d(~x, ~y)

Since j = 1, ..., n was arbitrary, we conclude

|xj − yj| ≤ d(~x, ~y) ∀j = 1, ..., n,

proving the first inequality.
Now we prove the second inequality. For j = 1, ..., n, we have

(xj − yj) ≤ max
i=1,...,n

{|xi − yi|} ⇒ (xj − yj)2 ≤ max
i=1,...,n

{|xi − yi|2}.

Summing over all j = 1, ..., n, we obtain

n∑
j=1

(xj − yj)2 ≤ n max
i=1,...,n

{|xi − yi|2}

Finally, taking the square root of both side of the equation (this can be done since
the square root function is increasing and ’preserves’ inequalities), we get√√√√ n∑

j=1

(xj − yj)2 ≤
√
n max

i=1,...,n
{|xi − yi|2} =

√
n max

i=1,...,n
{|xi − yi|},

and we conclude
d(~x, ~y) ≤

√
n max

i=1,...,n
{|xi − yi|},

proving the second inequality.

(b) (⇒) Suppose the sequence {~xk} converges to ~x in Rn. Let ε > 0 be given.
Since lim

k→∞
~xk = ~x, ∃N ∈ R such that

∀k > N ⇒ d(~xk, ~x) < ε. (6)

Fix j = 1, ..., n and consider the coordinate sequence {xk,j}. Choose this N given
above. Then, by (6) and Homework 13.2a we have

∀k > N ⇒ |xk,j − xj| ≤ d(~xk, ~x) < ε.
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Hence, this coordinate sequence converges to xj ∈ R. Since j = 1, ..., n was arbi-
trary, each coordinate sequence of {~xk} converges in R. Therefore, we conclude,
if the sequence {~xk} converges in Rn, then each j = 1, ..., n coordinate sequence
{xk,j} converges in R.

(⇐) Let {~xk} be a sequence is Rn. Suppose each coordinate sequence {xk,j}
converges to {xj} ∈ R for j = 1, ...n. Consider the point ~x := (x1, x2, ..., xn) ∈ Rn

(which is the point we will converge to). Let ε > 0 be given. For each j = 1, ...n,
since lim

k→∞
xk,j = xj, ∃Nj ∈ R such that

∀k > Nj ⇒ |xk,j − xj| <
ε√
n
.

Choose N := max{N1, ..., Nn}. Thus, using Homework 13.2a we have

∀k > N ⇒ d(~xk, ~x) ≤
√
n max

j=1,...,n
{|xj − yj|} <

√
n
ε√
n

= ε.

Therefore, we conclude that if each coordinate sequence {xk,j} (j = 1, ...n)
converges in R, then the sequence {~xk} converges in Rn.

13.3) (a) Let B = {{xk} : {xk} is bounded} (note that ~x ∈ B can be viewed as
a vector with an infinite number of terms, i.e ~x := (x1, x2, ..., xk, ...)), and define
the metric

d(~x, ~y) := sup
j∈N
{|xj − yj|}.

Let ~x, ~y, ~z ∈ B.

(i) We have d(~x, ~x) := sup
j∈N
{|xj − xj|} = 0. Also, if ~x 6= ~y, then there exists j ∈ N

such that xj 6= yj, and consequently, |xj−yj| > 0 because (R, | · |) is a metric space.
Therefore, d(~x, ~y) := sup

j∈N
{|xj − yj|} > 0.

(ii) It’s clear that

d(~x, ~y) := sup
j∈N
{|xj − yj|} = sup

j∈N
{|yj − xj|} =: d(~y, ~x).

(iii) Fix j ∈ N. Then, we have

|xj − zj| = |xj − yj + yj − zj| ≤ |xj − yj|+ |yj − zj|
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by the Triangle Inequality in R. Hence, we see

|xj − zj| ≤ |xj − yj|+ |yj − zj| ∀j ∈ N

Taking the supremum over j ∈ N of both sides gives us

d(~x, ~z) := sup
j∈N
{|xj − zj|} ≤ sup

j∈N
{|xj − yj|+ |yj − zj|} (7)

≤ sup
j∈N
{|xj − yj|}+ sup

j∈N
{|yj − zj|} =: d(~x, ~y) + d(~y, ~z), (8)

where we used the definition of the metric on both sides of the inequality.
Therefore, we conclude d(~x, ~y) is a metric, and the pair (B, d) is a metric space.
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