Homework 19 Solutions

13.1) For the following problem, let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$.

Consider the metric $d_1(\vec{x}, \vec{y}) := \max_{\substack{j=1,...,n}} \{|x_j - y_j|\}.$ (i) We have $d_1(\vec{x}, \vec{x}) := \max_{\substack{j=1,...,n}} \{|x_j - x_j|\} = 0$. Also, if $\vec{x} \neq \vec{y}$, then there exists j such that $x_j \neq y_j$, and consequently, $|x_j - y_j| > 0$ because $(\mathbb{R}, |\cdot|)$ is a metric space. Therefore, $d_1(\vec{x}, \vec{y}) := \max_{\substack{j=1,...,n}} \{|x_j - y_j|\} > 0$.

(ii) It's clear that

$$d_1(\vec{x}, \vec{y}) := \max_{j=1,\dots,n} \{ |x_j - y_j| \} = \max_{j=1,\dots,n} \{ |y_j - x_j| \} =: d_1(\vec{y}, \vec{x}).$$

(iii) Fix j = 1, ..., n. Then, we have

$$|x_j - z_j| = |x_j - y_j + y_j - z_j| \le |x_j - y_j| + |y_j - z_j|$$

by the Triangle Inequality in \mathbb{R} . Taking the maximum over j = 1, ..., n of both sides gives us

$$d_1(\vec{x}, \vec{z}) := \max_{j=1,\dots,n} \{ |x_j - z_j| \} \le \max_{j=1,\dots,n} \{ |x_j - y_j| + |y_j - z_j| \}$$
(1)

$$\leq \max_{j=1,\dots,n} \{ |x_j - y_j| \} + \max_{j=1,\dots,n} \{ |y_j - z_j| \} =: d_1(\vec{x}, \vec{y}) + d_1(\vec{y}, \vec{z}),$$
(2)

where we used the definition of the metric on both sides of the inequality.

Therefore, we conclude $d_1(\vec{x}, \vec{y})$ is a metric, and the pair (\mathbb{R}^n, d_1) is a metric space.

Now, consider the metric $d_2(\vec{x}, \vec{y}) := \sum_{j=1}^n |x_j - y_j|.$

(i) We have $d_2(\vec{x}, \vec{x}) := \sum_{j=1}^n |x_j - x_j| = 0$. Also, if $\vec{x} \neq \vec{y}$, then there exists j such set $x_j \neq y_j$ and consequently $|x_j - x_j| \ge 0$ because $(\mathbb{P}_j \mid j_j)$ is a metric space

that $x_j \neq y_j$, and consequently, $|x_j - y_j| > 0$ because $(\mathbb{R}, |\cdot|)$ is a metric space. Therefore, $d_2(\vec{x}, \vec{y}) := \sum_{j=1}^n |x_j - y_j| > 0.$ (ii) It's clear that

$$d_2(\vec{x}, \vec{y}) := \sum_{j=1}^n |x_j - y_j| = \sum_{j=1}^n |y_j - x_j| =: d_2(\vec{y}, \vec{x}).$$

(iii) Fix j = 1, ..., n. Then, we have

$$|x_j - z_j| = |x_j - y_j + y_j - z_j| \le |x_j - y_j| + |y_j - z_j|$$

by the Triangle Inequality in \mathbb{R} . Taking the sum over j = 1, ..., n of both sides gives us

$$d_2(\vec{x}, \vec{z}) := \sum_{j=1}^n |x_j - z_j| \le \sum_{j=1}^n (|x_j - y_j| + |y_j - z_j|)$$
(3)

$$=\sum_{j=1}^{n}|x_{j}-y_{j}|+\sum_{j=1}^{n}|y_{j}-z_{j}|=:d_{2}(\vec{x},\vec{y})+d_{2}(\vec{y},\vec{z}),$$
(4)

where we used the definition of the metric on both sides of the inequality and the fact that this is a finite sum to 'distribute' the summation.

Therefore, we conclude $d_2(\vec{x}, \vec{y})$ is a metric, and the pair (\mathbb{R}^n, d_2) is a metric space.

(b) Before we start this problem we need a couple of facts, the proof of the first is an optional homework problem

Proposition 1. Let $\vec{x}, \vec{y} \in \mathbb{R}^n$. For any j = 1, ..., n, the following inequality holds

$$|x_j - y_j| \le d_1(\vec{x}, \vec{y}) \le d_2(\vec{x}, \vec{y}) \le n \max_{j=1,\dots,n} \{ |x_j - y_j| \}$$

where the metrics d_1 and d_2 are defined above.

Proposition 2. Let $\{\vec{x}_k\}$ be a sequence is \mathbb{R}^n . If each coordinate sequence $\{x_{k,j}\}$ (j = 1, ...n) converges in the metric space $(\mathbb{R}, |\cdot|)$, then the sequence $\{\vec{x}_k\}$ converges in both (\mathbb{R}^n, d_1) and (\mathbb{R}^n, d_2) , where the metrics d_1 and d_2 are defined above..

Proof of Proposition 2: Let $\{\vec{x}_k\}$ be a sequence is \mathbb{R}^n . Suppose each coordinate sequence $\{x_{k,j}\}$ converges to $\{x_j\}$ for j = 1, ...n. Consider the point

 $\vec{x} := (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ (which is the point we will converge to). Let $\epsilon > 0$ be given. For each j = 1, ...n, since $\lim_{k \to \infty} x_{k,j} = x_j$, $\exists N_j \in \mathbb{R}$ such that

$$\forall k > N_j \Rightarrow |x_{k,j} - x_j| < \frac{\epsilon}{n}$$

Choose $N := \max\{N_1, ..., N_n\}$. Thus, using Proposition 1 we have

$$\forall k > N \Rightarrow d_1(\vec{x}_k, \vec{x}) \le d_2(\vec{x}_k, \vec{x}) \le n \max_{j=1,\dots,n} \{ |x_j - y_j| \} < n \frac{\epsilon}{n} = \epsilon.$$

Therefore, we conclude that if each coordinate sequence $\{x_{k,j}\}$ (j = 1, ..., n) converges, then the sequence $\{\vec{x}_k\}$ converges in both (\mathbb{R}^n, d_1) and (\mathbb{R}^n, d_2) .

Proof of 13.1b: Consider the metric space (\mathbb{R}^n, d_1) where the metric is defined above. Suppose the sequence $\{\vec{x}_k\}$ is Cauchy in this metric space. Let $\epsilon > 0$ be given. Since $\{\vec{x}_k\}$ is Cauchy, $\exists N \in \mathbb{R}$ such that

$$\forall k, m > N \Rightarrow d_1(\vec{x}_k, \vec{x}_m) < \epsilon.$$
(5)

Let j = 1, ..., n be fixed, and consider the coordinate sequence $\{x_{k,j}\}$. Choose N given above. Thus, using Proposition 1 and (5) we have

$$\forall k, m > N \Rightarrow |x_{k,j} - x_{m,j}| < d_1(\vec{x}_k, \vec{x}_m) < \epsilon.$$

Hence, the coordinate sequence $\{x_{k,j}\}$ is a Cauchy sequence in $(\mathbb{R}, |\cdot|)$ and is also a convergent sequence since $(\mathbb{R}, |\cdot|)$ is complete by Theorem 10.11. Let $\lim_{k\to\infty} x_{k,j} = x_j \in \mathbb{R}.$

Since j = 1, ..., n was arbitrary, all coordinate sequences $\{x_{k,j}\}$ converges to some $x_j \in \mathbb{R}$. By Proposition 2, the sequence $\{\vec{x}_k\}$ converges in (\mathbb{R}^n, d_1) . Since $\{\vec{x}_k\}$ was an arbitrary Cauchy sequence, we have if $\{\vec{x}_k\}$ is Cauchy in this metric space, then it converges as well. Therefore, we conclude the metric space (\mathbb{R}^n, d_1) is complete

Note: To show (\mathbb{R}^n, d_2) is complete, the same exact proof applies where you replace d_1 with d_2 .

13.2) (a) Let $\vec{x}, \vec{y} \in \mathbb{R}^n$. Consider the metric space (\mathbb{R}^n, d) with

$$d(\vec{x}, \vec{y}) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

We focus our attention on the first inequality. Fix j = 1, ..., n. Clearly, we have

$$|x_j - y_j| = \sqrt{(x_j - y_j)^2} \le \sqrt{\sum_{i=1}^n (x_i - y_i)^2} =: d(\vec{x}, \vec{y})$$

Since j = 1, ..., n was arbitrary, we conclude

$$|x_j - y_j| \le d(\vec{x}, \vec{y}) \quad \forall j = 1, ..., n,$$

proving the first inequality.

Now we prove the second inequality. For j = 1, ..., n, we have

$$(x_j - y_j) \le \max_{i=1,\dots,n} \{ |x_i - y_i| \} \Rightarrow (x_j - y_j)^2 \le \max_{i=1,\dots,n} \{ |x_i - y_i|^2 \}.$$

Summing over all j = 1, ..., n, we obtain

$$\sum_{j=1}^{n} (x_j - y_j)^2 \le n \max_{i=1,\dots,n} \{ |x_i - y_i|^2 \}$$

Finally, taking the square root of both side of the equation (this can be done since the square root function is increasing and 'preserves' inequalities), we get

$$\sqrt{\sum_{j=1}^{n} (x_j - y_j)^2} \le \sqrt{n \max_{i=1,\dots,n} \{|x_i - y_i|^2\}} = \sqrt{n} \max_{i=1,\dots,n} \{|x_i - y_i|\},\$$

and we conclude

$$d(\vec{x}, \vec{y}) \le \sqrt{n} \max_{i=1,\dots,n} \{ |x_i - y_i| \},\$$

proving the second inequality.

(b) (\Rightarrow) Suppose the sequence $\{\vec{x}_k\}$ converges to \vec{x} in \mathbb{R}^n . Let $\epsilon > 0$ be given. Since $\lim_{k \to \infty} \vec{x}_k = \vec{x}, \exists N \in \mathbb{R}$ such that

$$\forall k > N \Rightarrow d(\vec{x}_k, \vec{x}) < \epsilon.$$
(6)

Fix j = 1, ..., n and consider the coordinate sequence $\{x_{k,j}\}$. Choose this N given above. Then, by (6) and Homework 13.2a we have

$$\forall k > N \Rightarrow |x_{k,j} - x_j| \le d(\vec{x}_k, \vec{x}) < \epsilon.$$

Hence, this coordinate sequence converges to $x_j \in \mathbb{R}$. Since j = 1, ..., n was arbitrary, each coordinate sequence of $\{\vec{x}_k\}$ converges in \mathbb{R} . Therefore, we conclude, if the sequence $\{\vec{x}_k\}$ converges in \mathbb{R}^n , then each j = 1, ..., n coordinate sequence $\{x_{k,j}\}$ converges in \mathbb{R} .

(\Leftarrow) Let $\{\vec{x}_k\}$ be a sequence is \mathbb{R}^n . Suppose each coordinate sequence $\{x_{k,j}\}$ converges to $\{x_j\} \in \mathbb{R}$ for j = 1, ...n. Consider the point $\vec{x} := (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ (which is the point we will converge to). Let $\epsilon > 0$ be given. For each j = 1, ...n, since $\lim_{k \to \infty} x_{k,j} = x_j$, $\exists N_j \in \mathbb{R}$ such that

$$\forall k > N_j \Rightarrow |x_{k,j} - x_j| < \frac{\epsilon}{\sqrt{n}}$$

Choose $N := \max\{N_1, ..., N_n\}$. Thus, using Homework 13.2a we have

$$\forall k > N \Rightarrow d(\vec{x}_k, \vec{x}) \le \sqrt{n} \max_{j=1,\dots,n} \{ |x_j - y_j| \} < \sqrt{n} \frac{\epsilon}{\sqrt{n}} = \epsilon.$$

Therefore, we conclude that if each coordinate sequence $\{x_{k,j}\}$ (j = 1, ..., n) converges in \mathbb{R} , then the sequence $\{\vec{x}_k\}$ converges in \mathbb{R}^n .

13.3) (a) Let $B = \{\{x_k\} : \{x_k\} \text{ is bounded}\}$ (note that $\vec{x} \in B$ can be viewed as a vector with an infinite number of terms, i.e $\vec{x} := (x_1, x_2, ..., x_k, ...)$), and define the metric

$$d(\vec{x}, \vec{y}) := \sup_{j \in \mathbb{N}} \{ |x_j - y_j| \}.$$

Let $\vec{x}, \vec{y}, \vec{z} \in B$.

(i) We have $d(\vec{x}, \vec{x}) := \sup_{j \in \mathbb{N}} \{ |x_j - x_j| \} = 0$. Also, if $\vec{x} \neq \vec{y}$, then there exists $j \in \mathbb{N}$ such that $x_j \neq y_j$, and consequently, $|x_j - y_j| > 0$ because $(\mathbb{R}, |\cdot|)$ is a metric space. Therefore, $d(\vec{x}, \vec{y}) := \sup_{j \in \mathbb{N}} \{ |x_j - y_j| \} > 0$.

(ii) It's clear that

$$d(\vec{x}, \vec{y}) := \sup_{j \in \mathbb{N}} \{ |x_j - y_j| \} = \sup_{j \in \mathbb{N}} \{ |y_j - x_j| \} =: d(\vec{y}, \vec{x}).$$

(iii) Fix $j \in \mathbb{N}$. Then, we have

$$|x_j - z_j| = |x_j - y_j + y_j - z_j| \le |x_j - y_j| + |y_j - z_j|$$

by the Triangle Inequality in \mathbb{R} . Hence, we see

$$|x_j - z_j| \le |x_j - y_j| + |y_j - z_j| \quad \forall j \in \mathbb{N}$$

Taking the supremum over $j \in \mathbb{N}$ of both sides gives us

$$d(\vec{x}, \vec{z}) := \sup_{j \in \mathbb{N}} \{ |x_j - z_j| \} \le \sup_{j \in \mathbb{N}} \{ |x_j - y_j| + |y_j - z_j| \}$$
(7)

$$\leq \sup_{j \in \mathbb{N}} \{ |x_j - y_j| \} + \sup_{j \in \mathbb{N}} \{ |y_j - z_j| \} =: d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z}),$$
(8)

where we used the definition of the metric on both sides of the inequality.

Therefore, we conclude $d(\vec{x}, \vec{y})$ is a metric, and the pair (B, d) is a metric space.