Homework 2 Solutions

2.2) (a) Let © = /2, then x solves the equation 3 — 2 = 0. By the Rational Zero’s Theorem, since
solutions must be of the form % where p| — 3 and ¢|1, the only rational solutions to this equation are

+1,42. Clearly, none of these solve the equation. Since z = /2 solves the equation, /2 cannot be
rational. Therefore, /2 is irrational.

(b) Let # = v/5, then x solves the equation 7 —5 = 0. By the Rational Zero’s Theorem, since solutions
must be of the form g where p| —5 and ¢|1, the only rational solutions to this equation are +1, +5. Clearly,

none of these solve the equation. Since z = v/5 solves the equation, v/5 cannot be rational. Therefore, v/5
is irrational.

(c) Let z = v/13, then z solves the equation z* — 13 = 0. By the Rational Zero’s Theorem, since
solutions must be of the form % where p| — 13 and ¢|1, the only rational solutions to this equation are

+1,413. Clearly, none of these solve the equation. Since z = v/13 solves the equation, v/13 cannot be
rational. Therefore, v/13 is irrational.

2.3) Let z = V2 + /2, then we have
r=1\24+V2et=2+V2e (@*-2% =22t —4®+2=0.

So z solves the equation #* — 422 + 2 = 0. By the Rational Zero’s Theorem, since solutions must be
of the form % where p|2 and ¢|1, the only rational solutions to this equation are +1,42. Clearly, none of

these solve the equation. Since z = v/2 4 v/2 solves the equation, /2 + v/2 cannot be rational. Therefore,
2 + /2 is irrational.

2.4) Let x = \3/5—\/3, then we have
r=15-V3ead=5-V3so (252 =3 2% 102° +22 = 0.

So x solves the equation 2% — 1023 4 22 = 0. By the Rational Zero’s Theorem, since solutions must be
of the form g where p|22 and ¢|1, the only rational solutions to this equation are £1, 42, 11, £22. Notice
we must have > 0 since 5 > v/3 and z < 2 since & < /8 = 2, so the only rational option left for x to be
is 1, but clearly, 1 does not solve the equation. Since = v/5 — v/3 solves the equation, v/5 — /3 cannot
be rational. Therefore, v/5 — /3 is irrational.



Worksheet 2 Solutions

6) Suppose a, b, c € Z with a®> +b? = ¢2, but a an b are both odd. Then, 3k, m € Z such that a = 2k +1
and b = 2m 4+ 1. So, we obtain

A =a’+b* = (2k+1)2+(2m+1)? = (k% + 4k + 1)+ (4m? +4m +1) = 2(2k* + 2k +2m? + 2m + 1), (1)

with 2k% + 2k +2m? 4+ 2m + 1 € Z. Thus, ¢? is even. So c is even, and In € Z such that ¢ = 2n. Plugging
this into (1), we get

4n? = 2(2k% + 2k +2m? + 2m+1) = 202 = 2(K> + k+ m? 4+ m) + 1.

So, we have an odd number equaling an even number. Contradiction!
Therfore, if a,b, c € Z with a® + b?> = ¢?, then either a or b is even.

7) Let n € Z with n > 1. Define T'={m € N: m > 1 and m|n}. Then, T is nonempty since n € T, so
by the Well Ordering Principle, T has a least element b. If b is prime, then we are done.

Now, assume b is not prime. Then Ja € Z with 1 < a < b and alb. Since a|b and b|n, we have a|n.
Thus, a € T and a < b, but b was the least element in T. Contradiction! Thus, b must be prime.

Therefore, since n > 1 was arbitrary, every n > 1 has a prime factor.

8) This if false! If a = 2 and b = 3, then 6|ab, but 6 does not divide either a or b.



