Homework 20 Solutions

Before we start the next problem, we need a few facts. This first fact is almost
a direct consequence of definitions and is an optional homework assignment

Proposition 1. Let (S,d) be a metric space with E C S. Then, E° is open and
E~ is closed. Moreover, we have E° C E C E~.

Proposition 2. Let (S,d) be a metric space with E C S. If v € E~, then Vr >
0,3z, € E such that x. € B,(x).

Proof of Proposition 2: Let £ C S. Suppose x € E—, but dr > 0,Vx, € E we
have x, ¢ B,(z). We will use this » > 0. Since B,(z) is open and it shares no
elements with £, B,(z)% is a closed set with £ C B,(z)¢ and » ¢ B,(2)°, but
x € E~ so it must be in all closed sets containing E. Contradiction!

Therefore, we conclude if z € E~, then Vr > 0, 3z, € E such that =, € B,(x).

Proposition 3. Let (S,d) be a metric space with E C S. Then, (E°)¢ = (E°)~.

Proof of Proposition 3: Let £ C S. By Proposition 1, we have
E°C E= E°C (E°.

Suppose = € (EY)~. Since z € (E)™, it must be in every closed set containing
EC. In particular, since E¢ C (E°) and (E°)“ is closed (a compliment of an open
set E°), we must have z € (E°)¢. Thus, since x € (EY)~ was arbitrary, we have
(EO) C (B°)C.

Now, suppose = € (E°)Y, but # ¢ (E®)~. Then, there exists a closed set U C S
such that EC C U, but 2 € U. So v € U® C (EY)Y = E. Thus, by definition z is
an interior point of E since U is open. Hence, we have x € E°, but z € (E°)¢ by
assumption. Contradiction!

Consequently, if z € (E°)¢, then x € (E9)~, and we have (E°)¢ C (EY)".

Therefore, we have (E¢)~ C (E°)Y and (E°)¢ C (E)~, and we conclude
(E°) = (EY)



13.6) (a) (=) Suppose E is closed. Consider C' the collection of closed sets
containing E. Since F is closed and E C E, we have £ € C'. Let x € E~, so we
have x € U VU € C. Since £ € (', v € E. Thus, F~ C FE, and we also have
E C E~ by Proposition 1. Therefore, we conclude £ = E~.

(<) Suppose £ = E~. Since E~ is closed by Proposition 1, (E7)¢ = E¢ is
open. Therefore, we conclude E is closed by definition.

(b) (=) Suppose FE is closed, but there exists a sequence {s,} in F (i.e. s, €
E Vn € N) that converges to s € E. So s € EY. Since F is closed, E¢ is open and
s € E¢ is an interior point. Then, 3r > 0 such that B,(s) € E°. Since lim s, = s,

n—oo

dN € R such that ¥n > N, then d(s,,s) < r. In particular, let n = [N]+1 > N,
so d(s,,s) < r which implies s, € B,(s) and s, € E°. But s, € E Vn € N.
Contradiction!

Therefore, we conclude if E is closed then it contains the limit of every convergent
sequence in F.

(<) Suppose for every sequence {s,} in E that converges to s, we have s € E.
Let x € E~. Fix n € N and consider r = % > (. By Proposition 2, ds € E such
that s € Bi(x). Denote this element as z,, = s. Since n € N was arbitrary, we
have a sequence {z,,} with the property z,, € B%(az) Vn € N. Moreover, this implies
d(zn,x) < L Vn € N. Hence, this sequence converges to = (optional homework
assignment). By assumption, x € E. Since x € £~ was arbitrary, we have £~ C F,
and we also have £ C E~ by Proposition 1. Therefore, we know £/ = E~, and we

conclude F is closed by part (a).

Note: Ome could have used construction by induction to create the sequence
{z,}, but the induction step becomes trivial in this case. So a short-hand version
of it was used here, along with the next problem.

(¢) (=) Suppose z € E~. Fix n € N and consider r = 1 > 0. By Proposition
2, ds € E such that s € Bi(z). Denote this element as x, = s. Since n € N
was arbitrary, we have a sequence {z,} with the property z, € B %(x) Vn € N.
Moreover, this implies d(x,, ) < % Vn € N. Hence, this sequence converges to x
(optional homework assignment).

Therefore, we conclude if x € E~, then it is the limit of some sequence of points
in F.



(<) Suppose there exists a sequence {z,} in E (ie. z, € E Vn € N) that
converges to x. Since F C E~ from Proposition 1, the sequence {z,} is in £~ as
well. Because E~ is closed, it contains the limit of every convergent sequence from
part (b). In particular, we have z € E~.

Therefore, we conclude if there exists a sequence {x,} in E that converges to x,
then x € E.

(d) The handout has a mistake about this fact. Here’s the revised version:

Proposition 4. z € §E if and only if v € E~ and v € (EY)".

Proof: (=) Suppose = € §F, then by definition x € E~ \ E°, and obviously,
r € E~. Since r € E°, we know x € (E°)¢ = (E®)~ by Proposition 3. Thus, we
conclude if # € §E, then € B~ and x € (EY)".

(<) Suppose * € E~ and x € (E®)~. Because (EY)~ = (E°) by Proposition
3, we get © ¢ E°. We now have x € 0F := E~ \ E° since v € E~ and x ¢ E°.
Therefore, we conclude if € E~ and x € (EY)~, then x € §E.

13.9) Before we start this problem, the best way to find the closure of the set E
is to notice two things:

1) Proposition 1 tells us that £ C E~, so we know the original set will always
be in it’s closure.

2) In light of Proposition 13.9¢, which was proven above, we just need to look
for limit points outside of the set E which can be obtained with sequences in E.

With this in mind, we will always have £~ = E U {limit points outside of E'}.

(a) Let A:={%:n € N}. Then A~ = AU {0}.

(b) Let B := Q. Because every irrational number in I can be the limit of a
sequence of rational numbers (Practice Exam 1 Problem 8), we have B~ = BUI =
QuUI=R.

(c) Let C := {r € Q : r* < 2}. Using similar logic as in part (b), we have
C-=Cuf{rcl:2? <2} =(~o0,V2].

13.10) (a) Let A := {+ : n € N}. Pick some element in p € A. Let r > 0 be
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given. Notice, that p < p + r so by the Denseness of the Irrationals (Homework
4.12), dz € I such that p < = < p+r. Clearly, z € B,(p) and = ¢ A since
the set A only contains rational numbers. Since r > 0 was arbitrary, there is not
neighborhood about p which is a subset of A, and p is not an interior point of A.
Because p € A was arbitrary, p € A° Vp € A. Therefore, we conclude A° = ().

(b) Let B := Q. Pick some element in p € B. Let r > 0 be given. Notice, that
p < p+1 so by the Denseness of the Irrationals (Homework 4.12), 3z € I such that
p <x <p+r. Clearly, x € B,(p) and = ¢ B since the set B only contains rational
numbers. Since r > 0 was arbitrary, there is not neighborhood about p which is

a subset of B, and p is not an interior point of B. Because p € B was arbitrary,
p & B° Vp € B. Therefore, we conclude B° = ().



