
Homework 20 Solutions

Before we start the next problem, we need a few facts. This first fact is almost
a direct consequence of definitions and is an optional homework assignment

Proposition 1. Let (S, d) be a metric space with E ⊆ S. Then, E◦ is open and
E− is closed. Moreover, we have E◦ ⊆ E ⊆ E−.

Proposition 2. Let (S, d) be a metric space with E ⊆ S. If x ∈ E−, then ∀r >
0,∃x∗ ∈ E such that x∗ ∈ Br(x).

Proof of Proposition 2: Let E ⊆ S. Suppose x ∈ E−, but ∃r > 0,∀x∗ ∈ E we
have x∗ 6∈ Br(x). We will use this r > 0. Since Br(x) is open and it shares no
elements with E, Br(x)C is a closed set with E ⊆ Br(x)C and x 6∈ Br(x)C , but
x ∈ E− so it must be in all closed sets containing E. Contradiction!

Therefore, we conclude if x ∈ E−, then ∀r > 0,∃x∗ ∈ E such that x∗ ∈ Br(x).

Proposition 3. Let (S, d) be a metric space with E ⊆ S. Then, (E◦)C = (EC)−.

Proof of Proposition 3: Let E ⊆ S. By Proposition 1, we have

E◦ ⊆ E ⇒ EC ⊆ (E◦)C .

Suppose x ∈ (EC)−. Since x ∈ (EC)−, it must be in every closed set containing
EC . In particular, since EC ⊆ (E◦)C and (E◦)C is closed (a compliment of an open
set E◦), we must have x ∈ (E◦)C . Thus, since x ∈ (EC)− was arbitrary, we have
(EC)− ⊆ (E◦)C .

Now, suppose x ∈ (E◦)C , but x 6∈ (EC)−. Then, there exists a closed set U ⊆ S
such that EC ⊆ U , but x 6∈ U . So x ∈ UC ⊆ (EC)C = E. Thus, by definition x is
an interior point of E since UC is open. Hence, we have x ∈ E◦, but x ∈ (E◦)C by
assumption. Contradiction!

Consequently, if x ∈ (E◦)C , then x ∈ (EC)−, and we have (E◦)C ⊆ (EC)−.

Therefore, we have (EC)− ⊆ (E◦)C and (E◦)C ⊆ (EC)−, and we conclude
(E◦)C = (EC)−
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13.6) (a) (⇒) Suppose E is closed. Consider C the collection of closed sets
containing E. Since E is closed and E ⊆ E, we have E ∈ C. Let x ∈ E−, so we
have x ∈ U ∀U ∈ C. Since E ∈ C, x ∈ E. Thus, E− ⊆ E, and we also have
E ⊆ E− by Proposition 1. Therefore, we conclude E = E−.

(⇐) Suppose E = E−. Since E− is closed by Proposition 1, (E−)C = EC is
open. Therefore, we conclude E is closed by definition.

(b) (⇒) Suppose E is closed, but there exists a sequence {sn} in E (i.e. sn ∈
E ∀n ∈ N) that converges to s 6∈ E. So s ∈ EC . Since E is closed, EC is open and
s ∈ EC is an interior point. Then, ∃r > 0 such that Br(s) ⊆ EC . Since lim

n→∞
sn = s,

∃N ∈ R such that ∀n > N , then d(sn, s) < r. In particular, let n = dNe+ 1 > N ,
so d(sn, s) < r which implies sn ∈ Br(s) and sn ∈ EC . But sn ∈ E ∀n ∈ N .
Contradiction!

Therefore, we conclude if E is closed then it contains the limit of every convergent
sequence in E.

(⇐) Suppose for every sequence {sn} in E that converges to s, we have s ∈ E.
Let x ∈ E−. Fix n ∈ N and consider r = 1

n > 0. By Proposition 2, ∃s ∈ E such
that s ∈ B 1

n
(x). Denote this element as xn = s. Since n ∈ N was arbitrary, we

have a sequence {xn} with the property xn ∈ B 1
n
(x) ∀n ∈ N. Moreover, this implies

d(xn, x) < 1
n ∀n ∈ N. Hence, this sequence converges to x (optional homework

assignment). By assumption, x ∈ E. Since x ∈ E− was arbitrary, we have E− ⊆ E,
and we also have E ⊆ E− by Proposition 1. Therefore, we know E = E−, and we
conclude E is closed by part (a).

Note: One could have used construction by induction to create the sequence
{xn}, but the induction step becomes trivial in this case. So a short-hand version
of it was used here, along with the next problem.

(c) (⇒) Suppose x ∈ E−. Fix n ∈ N and consider r = 1
n > 0. By Proposition

2, ∃s ∈ E such that s ∈ B 1
n
(x). Denote this element as xn = s. Since n ∈ N

was arbitrary, we have a sequence {xn} with the property xn ∈ B 1
n
(x) ∀n ∈ N.

Moreover, this implies d(xn, x) < 1
n ∀n ∈ N. Hence, this sequence converges to x

(optional homework assignment).
Therefore, we conclude if x ∈ E−, then it is the limit of some sequence of points

in E.
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(⇐) Suppose there exists a sequence {xn} in E (i.e. xn ∈ E ∀n ∈ N) that
converges to x. Since E ⊆ E− from Proposition 1, the sequence {xn} is in E− as
well. Because E− is closed, it contains the limit of every convergent sequence from
part (b). In particular, we have x ∈ E−.

Therefore, we conclude if there exists a sequence {xn} in E that converges to x,
then x ∈ E−.

(d) The handout has a mistake about this fact. Here’s the revised version:

Proposition 4. x ∈ δE if and only if x ∈ E− and x ∈ (EC)−.

Proof: (⇒) Suppose x ∈ δE, then by definition x ∈ E− \ E◦, and obviously,
x ∈ E−. Since x 6∈ E◦, we know x ∈ (E◦)C = (EC)− by Proposition 3. Thus, we
conclude if x ∈ δE, then x ∈ E− and x ∈ (EC)−.

(⇐) Suppose x ∈ E− and x ∈ (EC)−. Because (EC)− = (E◦)C by Proposition
3, we get x 6∈ E◦. We now have x ∈ δE := E− \ E◦ since x ∈ E− and x 6∈ E◦.

Therefore, we conclude if x ∈ E− and x ∈ (EC)−, then x ∈ δE.

13.9) Before we start this problem, the best way to find the closure of the set E
is to notice two things:

1) Proposition 1 tells us that E ⊆ E−, so we know the original set will always
be in it’s closure.

2) In light of Proposition 13.9c, which was proven above, we just need to look
for limit points outside of the set E which can be obtained with sequences in E.

With this in mind, we will always have E− = E ∪ {limit points outside of E}.

(a) Let A := { 1n : n ∈ N}. Then A− = A ∪ {0}.

(b) Let B := Q. Because every irrational number in I can be the limit of a
sequence of rational numbers (Practice Exam 1 Problem 8), we have B− = B∪ I =
Q ∪ I = R.

(c) Let C := {r ∈ Q : r2 < 2}. Using similar logic as in part (b), we have
C− = C ∪ {x ∈ I : x2 ≤ 2} = (−∞,

√
2].

13.10) (a) Let A := { 1n : n ∈ N}. Pick some element in p ∈ A. Let r > 0 be
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given. Notice, that p < p + r so by the Denseness of the Irrationals (Homework
4.12), ∃x ∈ I such that p < x < p + r. Clearly, x ∈ Br(p) and x 6∈ A since
the set A only contains rational numbers. Since r > 0 was arbitrary, there is not
neighborhood about p which is a subset of A, and p is not an interior point of A.
Because p ∈ A was arbitrary, p 6∈ A◦ ∀p ∈ A. Therefore, we conclude A◦ = ∅.

(b) Let B := Q. Pick some element in p ∈ B. Let r > 0 be given. Notice, that
p < p+ r so by the Denseness of the Irrationals (Homework 4.12), ∃x ∈ I such that
p < x < p+ r. Clearly, x ∈ Br(p) and x 6∈ B since the set B only contains rational
numbers. Since r > 0 was arbitrary, there is not neighborhood about p which is
a subset of B, and p is not an interior point of B. Because p ∈ B was arbitrary,
p 6∈ B◦ ∀p ∈ B. Therefore, we conclude B◦ = ∅.
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