Homework 3 Solutions

3.3) (a) Notice by A4, we have a+(—a) = 0 which implies a = —(—a), then we can obtain ab = —(—ab).
Combining this with part (iii) of Theorem 3.1, the following occurs

(=a)(=b) = =(a(=b)) = =((=b)a) = —(~ba) = —(—ab) = ab,

where we used the commutative law (M2) twice. Thus, we conclude (—a)(—b) = ab.

(b) Suppose ac = bec and ¢ # 0. Then by M4 3e¢=! € R so we can multiply to get (ac)e™! = (be)c™!. So
a(cc™') = b(cc™1) by M1, and this becomes al = bl by the inverse property M4. Thus, we conclude a = b
by M3.

3.4) (a) By (iv) in Theorem 3.2, we have 0 < 12 = 1, and since 0 # 1 by M3, we conclude 0 < 1.

(b) Suppose 0 < a < b. Using (vi) of Theorem 3.2 twice, we have a=! > 0 and b~! > 0. Since
a < b, we have a~!a < a='b by O5 and 1 < a~'b by M4. Then 1(b71) < (a=1b)b~! by O5, so we have
b=! < a'(bb~') by M3 and M1. Finally, we can obtain 6! < a=!-1 = a~! by M4 and M3. Therefore, we
conclude 0 < b~! < a~ 1,

3.5) (b) Suppose a,b € R. We will consider the only two cases: (i) |a| —|b] > 0 and (ii) |a| — |b] < 0.

Case (i): Suppose |a| —|b| > 0. Then, we must have ||a| —|b|| = |a| — |b| by definition of absolute value.

By the Triangle Inequality, we get |a| = [(a — b) + b| < |a — b| + |b|. So, with subtraction by |b|, we obtain

la] - Ibl‘ = la] = bl < (la = [ +[b]) — [b] = |a — b].

Thus,

af - |b|\ <la—b].

Case (ii): Suppose |a| — |b] < 0. Then, we must have ‘a\ — \b\‘ = —(la| —|b]) = |b| — |a| by definition of

absolute value. By the Triangle Inequality, we get [b| = |(b — a) + a| < |b — a| + |a|. So, with subtraction
by |a|, we obtain

Ial—lbl‘ = [b] = la| < ([b = a[ +|a]) = a[ = [b = a] = |a = b].

Thus, we conclude

ol - |b|\ <la—b].

Since a and b were arbitrary, both cases give us

a|—|b\' <|a —b| Va,b e R.

3.6) (b) (i) This is true for n = 1, since |a;1| < |a1| by equality.



(ii) Let n € N. Suppose that
la1 + a2 + ... + an| < |a1| + |az] + ... + |an] (1)
is true. Then, by the Triangle Inequality, we obtain
lar + a2 + ... + an + any1| = [(a1 + a2 + ... + an) + any1] < lar +az + ...+ ap| + ang 1]
So, using the induction hypothesis (1), we conclude
lar + ag + ... + an + ant1| < lai| + |az| + ... + |an| + |ant1],

and the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude

lar + ag + ... + an| < lai| +|az| + ... + |an| Yn €N



Worksheet 2 Solutions

1) Suppose a < b and ¢ < d. Since a < b, we have a+ ¢ < b+ ¢ by O4. Similarly, since ¢ < d, we obtain
b+ c < b+ d with O4 and A2. Using both of these inequalities along with O3, we conclude a + ¢ < b+ d.

2) Suppose 0 < a < band 0 < ¢ < d. Since a < b and 0 < ¢, we get ac < be by O5. Similarly, since
¢ < dand 0 < b, we obtain bc < bd with O5 and M2. Combining these inequalities with O3, we conclude
ac < bd.

3) Suppose = > 0, y > 0, and 22 < y2, but > . Since x > 0 and z > y, we have 2> > xy by O5 and
M2. Similarly, since y > 0 and x < y, we get zy > y> with O5. Combining these inequalities with O3, we
obtain 22 > 2, but we assumed z? < y2. Contradiction!

Therefore, if z > 0, y > 0, and 22 < y?, then = < y.

4) Suppose 0 < = < y.
(i) This is true for n = 1, since z < y by assumption.

(i) Let n € N. Suppose that 2" > y" is true. Since x > 0, multiplying both sides by x yields 2" ™! < y"
by O5 and M2. Since 3™ > 0, through repeated use of (iii) of Theorem 3.2, and = < y, we have zy" < y"*!
by O5. Combining these inequalities with O3, we conclude 2"+ < 3"+, So the statement is true for n+ 1.

Therefore, by the Principle of Mathematical Induction, we conclude if 0 < z < y, then z" < y" Vn € N.
5) (a) Suppose 0 < ¢ < 1.
(i) Since ¢ > 0 and ¢ < 1, we have ¢? < 1c = ¢ by O5 and M3. Thus, ¢" < ¢ for n = 2.

(ii) Let n € N with n > 2. Suppose that ¢" < ¢ is true. Since ¢ > 0, multiplying both sides by ¢ yields
" < ¢ by 05, so since ¢? < ¢, we have ¢"T! < ¢ by 03. So the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude if 0 < ¢ < 1, then ¢" < ¢ Vn € Z
with n > 1.

(b) Suppose ¢ > 1.
(i) Since ¢ > 1 and 1 > 0, we have ¢ > 0 by O3, so we get ¢2 > lc = ¢ by O5 and M3. Thus, ¢" > ¢ for
n = 2.

(ii) Let n € N with n > 2. Suppose that ¢” > ¢ is true. Since ¢ > 0, multiplying both sides by ¢ yields
"t > ¢ by 05, so since ¢® > ¢, we have ¢"™! > ¢ by 03. So the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude if ¢ > 1, then ¢ > ¢ Vn € Z with
n > 1.



6) Suppose a®+b? = 0. Using A4, we get (a®+b%) + (—b?) = 0+ (—b?). This implies a® + (b*> 4 (—b%)) =
—b% by Al and A3. Hence, we have a®? = a® + 0 = —b® by A4 and A3, which tells us a®> = —b%. By using
(iv) of Theorem 3.2 twice, we know a? > 0 and b*> > 0 and then —b? < 0 by (i) of Theorem 3.2. Since
a’? = —b? < 0 and a® > 0, we must have a? = 0 by O2 and consequently, —b?> = 0. Using (vi) of Theorem
3.1 twice on these equalities, we conclude a = 0 and b = 0.



