
Homework 3 Solutions

3.3) (a) Notice by A4, we have a+(−a) = 0 which implies a = −(−a), then we can obtain ab = −(−ab).
Combining this with part (iii) of Theorem 3.1, the following occurs

(−a)(−b) = −(a(−b)) = −((−b)a) = −(−ba) = −(−ab) = ab,

where we used the commutative law (M2) twice. Thus, we conclude (−a)(−b) = ab.

(b) Suppose ac = bc and c 6= 0. Then by M4 ∃c−1 ∈ R so we can multiply to get (ac)c−1 = (bc)c−1. So
a(cc−1) = b(cc−1) by M1, and this becomes a1 = b1 by the inverse property M4. Thus, we conclude a = b
by M3.

3.4) (a) By (iv) in Theorem 3.2, we have 0 ≤ 12 = 1, and since 0 6= 1 by M3, we conclude 0 < 1.

(b) Suppose 0 < a < b. Using (vi) of Theorem 3.2 twice, we have a−1 > 0 and b−1 > 0. Since
a < b, we have a−1a < a−1b by O5 and 1 < a−1b by M4. Then 1(b−1) < (a−1b)b−1 by O5, so we have
b−1 < a−1(bb−1) by M3 and M1. Finally, we can obtain b−1 < a−1 · 1 = a−1 by M4 and M3. Therefore, we
conclude 0 < b−1 < a−1.

3.5) (b) Suppose a, b ∈ R. We will consider the only two cases: (i) |a| − |b| ≥ 0 and (ii) |a| − |b| < 0.

Case (i): Suppose |a|− |b| ≥ 0. Then, we must have

∣∣∣∣|a|− |b|∣∣∣∣ = |a|− |b| by definition of absolute value.

By the Triangle Inequality, we get |a| = |(a− b) + b| ≤ |a− b|+ |b|. So, with subtraction by |b|, we obtain∣∣∣∣|a| − |b|∣∣∣∣ = |a| − |b| ≤ (|a− b|+ |b|)− |b| = |a− b|.

Thus,

∣∣∣∣|a| − |b|∣∣∣∣ ≤ |a− b|.

Case (ii): Suppose |a| − |b| < 0. Then, we must have

∣∣∣∣|a| − |b|∣∣∣∣ = −(|a| − |b|) = |b| − |a| by definition of

absolute value. By the Triangle Inequality, we get |b| = |(b− a) + a| ≤ |b− a|+ |a|. So, with subtraction
by |a|, we obtain ∣∣∣∣|a| − |b|∣∣∣∣ = |b| − |a| ≤ (|b− a|+ |a|)− |a| = |b− a| = |a− b|.

Thus, we conclude

∣∣∣∣|a| − |b|∣∣∣∣ ≤ |a− b|.

Since a and b were arbitrary, both cases give us

∣∣∣∣|a| − |b|∣∣∣∣ ≤ |a− b| ∀a, b ∈ R.

3.6) (b) (i) This is true for n = 1, since |a1| ≤ |a1| by equality.
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(ii) Let n ∈ N. Suppose that

|a1 + a2 + ... + an| ≤ |a1|+ |a2|+ ... + |an| (1)

is true. Then, by the Triangle Inequality, we obtain

|a1 + a2 + ... + an + an+1| = |(a1 + a2 + ... + an) + an+1| ≤ |a1 + a2 + ... + an|+ |an+1|

So, using the induction hypothesis (1), we conclude

|a1 + a2 + ... + an + an+1| ≤ |a1|+ |a2|+ ... + |an|+ |an+1|,

and the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude

|a1 + a2 + ... + an| ≤ |a1|+ |a2|+ ... + |an| ∀n ∈ N
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Worksheet 2 Solutions

1) Suppose a ≤ b and c ≤ d. Since a ≤ b, we have a+ c ≤ b+ c by O4. Similarly, since c ≤ d, we obtain
b + c ≤ b + d with O4 and A2. Using both of these inequalities along with O3, we conclude a + c ≤ b + d.

2) Suppose 0 ≤ a ≤ b and 0 ≤ c ≤ d. Since a ≤ b and 0 ≤ c, we get ac ≤ bc by O5. Similarly, since
c ≤ d and 0 ≤ b, we obtain bc ≤ bd with O5 and M2. Combining these inequalities with O3, we conclude
ac ≤ bd.

3) Suppose x > 0, y > 0, and x2 < y2, but x ≥ y. Since x > 0 and x ≥ y, we have x2 ≥ xy by O5 and
M2. Similarly, since y > 0 and x ≤ y, we get xy ≥ y2 with O5. Combining these inequalities with O3, we
obtain x2 ≥ y2, but we assumed x2 < y2. Contradiction!

Therefore, if x > 0, y > 0, and x2 < y2, then x < y.

4) Suppose 0 < x < y.
(i) This is true for n = 1, since x < y by assumption.

(ii) Let n ∈ N. Suppose that xn > yn is true. Since x > 0, multiplying both sides by x yields xn+1 < yn

by O5 and M2. Since yn > 0, through repeated use of (iii) of Theorem 3.2, and x < y, we have xyn < yn+1

by O5. Combining these inequalities with O3, we conclude xn+1 < yn+1. So the statement is true for n+1.

Therefore, by the Principle of Mathematical Induction, we conclude if 0 < x < y, then xn < yn ∀n ∈ N.

5) (a) Suppose 0 < c < 1.
(i) Since c > 0 and c < 1, we have c2 < 1c = c by O5 and M3. Thus, cn < c for n = 2.

(ii) Let n ∈ N with n ≥ 2. Suppose that cn < c is true. Since c > 0, multiplying both sides by c yields
cn+1 < c2 by O5, so since c2 < c, we have cn+1 < c by O3. So the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude if 0 < c < 1, then cn < c ∀n ∈ Z
with n > 1.

(b) Suppose c > 1.
(i) Since c > 1 and 1 > 0, we have c > 0 by O3, so we get c2 > 1c = c by O5 and M3. Thus, cn > c for

n = 2.

(ii) Let n ∈ N with n ≥ 2. Suppose that cn > c is true. Since c > 0, multiplying both sides by c yields
cn+1 > c2 by O5, so since c2 > c, we have cn+1 > c by O3. So the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude if c > 1, then cn > c ∀n ∈ Z with
n > 1.
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6) Suppose a2+b2 = 0. Using A4, we get (a2+b2)+(−b2) = 0+(−b2). This implies a2+(b2+(−b2)) =
−b2 by A1 and A3. Hence, we have a2 = a2 + 0 = −b2 by A4 and A3, which tells us a2 = −b2. By using
(iv) of Theorem 3.2 twice, we know a2 ≥ 0 and b2 ≥ 0 and then −b2 ≤ 0 by (i) of Theorem 3.2. Since
a2 = −b2 ≤ 0 and a2 ≥ 0, we must have a2 = 0 by O2 and consequently, −b2 = 0. Using (vi) of Theorem
3.1 twice on these equalities, we conclude a = 0 and b = 0.
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