Homework 3 Solutions

3.3) (a) Notice by A4, we have a + (-a) = 0 which implies a = -(-a), then we can obtain ab = -(-ab). Combining this with part (iii) of Theorem 3.1, the following occurs

$$(-a)(-b) = -(a(-b)) = -((-b)a) = -(-ba) = -(-ab) = ab,$$

where we used the commutative law (M2) twice. Thus, we conclude (-a)(-b) = ab.

(b) Suppose ac = bc and $c \neq 0$. Then by M4 $\exists c^{-1} \in \mathbb{R}$ so we can multiply to get $(ac)c^{-1} = (bc)c^{-1}$. So $a(cc^{-1}) = b(cc^{-1})$ by M1, and this becomes a1 = b1 by the inverse property M4. Thus, we conclude a = b by M3.

3.4) (a) By (iv) in Theorem 3.2, we have $0 \le 1^2 = 1$, and since $0 \ne 1$ by M3, we conclude 0 < 1.

(b) Suppose 0 < a < b. Using (vi) of Theorem 3.2 twice, we have $a^{-1} > 0$ and $b^{-1} > 0$. Since a < b, we have $a^{-1}a < a^{-1}b$ by O5 and $1 < a^{-1}b$ by M4. Then $1(b^{-1}) < (a^{-1}b)b^{-1}$ by O5, so we have $b^{-1} < a^{-1}(bb^{-1})$ by M3 and M1. Finally, we can obtain $b^{-1} < a^{-1} \cdot 1 = a^{-1}$ by M4 and M3. Therefore, we conclude $0 < b^{-1} < a^{-1}$.

3.5) (b) Suppose $a, b \in \mathbb{R}$. We will consider the only two cases: (i) $|a| - |b| \ge 0$ and (ii) |a| - |b| < 0. Case (i): Suppose $|a| - |b| \ge 0$. Then, we must have ||a| - |b|| = |a| - |b| by definition of absolute value. By the Triangle Inequality, we get $|a| = |(a - b) + b| \le |a - b| + |b|$. So, with subtraction by |b|, we obtain

$$||a| - |b|| = |a| - |b| \le (|a - b| + |b|) - |b| = |a - b|$$

Thus, $||a| - |b|| \le |a - b|.$

Case (ii): Suppose |a| - |b| < 0. Then, we must have ||a| - |b|| = -(|a| - |b|) = |b| - |a| by definition of absolute value. By the Triangle Inequality, we get $|b| = |(b-a) + a| \le |b-a| + |a|$. So, with subtraction by |a|, we obtain

$$||a| - |b|| = |b| - |a| \le (|b - a| + |a|) - |a| = |b - a| = |a - b|$$

Thus, we conclude $||a| - |b|| \le |a - b|$.

Since a and b were arbitrary, both cases give us $||a| - |b|| \le |a - b| \ \forall a, b \in \mathbb{R}.$

3.6) (b) (i) This is true for n = 1, since $|a_1| \le |a_1|$ by equality.

(ii) Let $n \in \mathbb{N}$. Suppose that

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n| \tag{1}$$

is true. Then, by the Triangle Inequality, we obtain

$$|a_1 + a_2 + \dots + a_n + a_{n+1}| = |(a_1 + a_2 + \dots + a_n) + a_{n+1}| \le |a_1 + a_2 + \dots + a_n| + |a_{n+1}|$$

So, using the induction hypothesis (1), we conclude

$$|a_1 + a_2 + \dots + a_n + a_{n+1}| \le |a_1| + |a_2| + \dots + |a_n| + |a_{n+1}|,$$

and the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n| \quad \forall n \in \mathbb{N}$$

Worksheet 2 Solutions

1) Suppose $a \le b$ and $c \le d$. Since $a \le b$, we have $a + c \le b + c$ by O4. Similarly, since $c \le d$, we obtain $b + c \le b + d$ with O4 and A2. Using both of these inequalities along with O3, we conclude $a + c \le b + d$.

2) Suppose $0 \le a \le b$ and $0 \le c \le d$. Since $a \le b$ and $0 \le c$, we get $ac \le bc$ by O5. Similarly, since $c \le d$ and $0 \le b$, we obtain $bc \le bd$ with O5 and M2. Combining these inequalities with O3, we conclude $ac \le bd$.

3) Suppose x > 0, y > 0, and $x^2 < y^2$, but $x \ge y$. Since x > 0 and $x \ge y$, we have $x^2 \ge xy$ by O5 and M2. Similarly, since y > 0 and $x \le y$, we get $xy \ge y^2$ with O5. Combining these inequalities with O3, we obtain $x^2 \ge y^2$, but we assumed $x^2 < y^2$. Contradiction!

Therefore, if x > 0, y > 0, and $x^2 < y^2$, then x < y.

4) Suppose 0 < x < y.
(i) This is true for n = 1, since x < y by assumption.

(ii) Let $n \in \mathbb{N}$. Suppose that $x^n > y^n$ is true. Since x > 0, multiplying both sides by x yields $x^{n+1} < y^n$ by O5 and M2. Since $y^n > 0$, through repeated use of (iii) of Theorem 3.2, and x < y, we have $xy^n < y^{n+1}$ by O5. Combining these inequalities with O3, we conclude $x^{n+1} < y^{n+1}$. So the statement is true for n+1.

Therefore, by the Principle of Mathematical Induction, we conclude if 0 < x < y, then $x^n < y^n \ \forall n \in \mathbb{N}$.

5) (a) Suppose 0 < c < 1. (i) Since c > 0 and c < 1, we have $c^2 < 1c = c$ by O5 and M3. Thus, $c^n < c$ for n = 2.

(ii) Let $n \in \mathbb{N}$ with $n \ge 2$. Suppose that $c^n < c$ is true. Since c > 0, multiplying both sides by c yields $c^{n+1} < c^2$ by O5, so since $c^2 < c$, we have $c^{n+1} < c$ by O3. So the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude if 0 < c < 1, then $c^n < c \ \forall n \in \mathbb{Z}$ with n > 1.

(b) Suppose c > 1.

(i) Since c > 1 and 1 > 0, we have c > 0 by O3, so we get $c^2 > 1c = c$ by O5 and M3. Thus, $c^n > c$ for n = 2.

(ii) Let $n \in \mathbb{N}$ with $n \ge 2$. Suppose that $c^n > c$ is true. Since c > 0, multiplying both sides by c yields $c^{n+1} > c^2$ by O5, so since $c^2 > c$, we have $c^{n+1} > c$ by O3. So the statement is true for n + 1.

Therefore, by the Principle of Mathematical Induction, we conclude if c > 1, then $c^n > c \ \forall n \in \mathbb{Z}$ with n > 1.

6) Suppose $a^2 + b^2 = 0$. Using A4, we get $(a^2 + b^2) + (-b^2) = 0 + (-b^2)$. This implies $a^2 + (b^2 + (-b^2)) = -b^2$ by A1 and A3. Hence, we have $a^2 = a^2 + 0 = -b^2$ by A4 and A3, which tells us $a^2 = -b^2$. By using (iv) of Theorem 3.2 twice, we know $a^2 \ge 0$ and $b^2 \ge 0$ and then $-b^2 \le 0$ by (i) of Theorem 3.2. Since $a^2 = -b^2 \le 0$ and $a^2 \ge 0$, we must have $a^2 = 0$ by O2 and consequently, $-b^2 = 0$. Using (vi) of Theorem 3.1 twice on these equalities, we conclude a = 0 and b = 0.