
Homework 4 Solutions

4.1e-4.4e) Consider

S :=

{
1

n
: n ∈ N

}
=

{
1,

1

2
,
1

3
, ...

}
.

1) Upper bounds: 1, 2, 19, ...
2) Lower bounds: 0, -1, -53 , ...
3) sup S = 1, max S = 1
4) inf S = 0, min S does not exist

4.1g-4.4g) Consider
S := [0, 1] ∪ [2, 3] = {x : 0 ≤ x ≤ 1 or 2 ≤ x ≤ 3} .

1) Upper bounds: 3, π, 100, ...
2) Lower bounds: 0, -7, -51, ...
3) sup S = 3, max S = 3
4) inf S = 0, min S = 0

4.3j-4.4j) Consider

S :=

{
1− 1

3n
: n ∈ N

}
=

{
1− 1

3
, 1− 1

9
, 1− 1

27
, ...

}
.

3) sup S = 1, max S does not exist
4) inf S = 2

3 , min S = 2
3

4.3s-4.4s) Consider

S :=

{
1

3n
: n is prime

}
=

{
1

2
,
1

3
,
1

5
,
1

7
,

1

11
, ...

}
.

3) sup S = 1
2 , max S = 1

2
4) inf S =0, min S does not exist

Notes:
(1) In 3j, we could prove that sup S = 1 using the Archimedean Property and the fact that 3n >

n ∀n ∈ N.
(2) In 4s, we could prove that inf S = 0 using the Archimedean Property and the fact that there are

infinitely many primes.

4.7) (b) Suppose S, T ⊂ R are nonempty bounded sets. Without loss of generality, we assume sup S ≥
sup T , so max{sup S, sup T} = sup S. Since S ⊂ S ∪ T , we have sup S ≤ sup (S ∪ T ) by problem 4.7a.
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If x ∈ S∪T , then either x ∈ S or x ∈ T . If x ∈ S, then x ≤ sup S. If x ∈ T , then x ≤ sup T ≤ sup S.
Thus, since x ∈ S ∪ T was arbitrary, we have x ≤ sup S ∀x ∈ S ∪ T . Hence, sup S is an upper bound,
and we obtain sup (S ∪ T ) ≤ sup S.

Therefore, since we have sup S ≤ sup (S ∪ T ) and sup (S ∪ T ) ≤ sup S, we conclude sup (S ∪ T ) =
sup S = max{sup S, sup T}.

4.8) (b) Suppose S, T ⊂ R are nonempty with s ≤ t ∀s ∈ S and ∀t ∈ T . Let t ∈ T . Since s ≤ t ∀s ∈ S,
t is an upper bound for S, so sup S ≤ t. Since t ∈ T was arbitrary, we have sup S ≤ t ∀t ∈ T . Therefore,
sup S is a lower bound for T , and we conclude sup S ≤ inf T .
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Worksheet 2 Solutions

7) Suppose a, b ∈ R with a ≥ 0 and b ≥ 0. Since (a− b)2 ≥ 0, we have a2 − 2ab+ b2 ≥ 0. Adding 4ab
to both sides, gives us

a2 + 2ab+ b2 ≥ 4ab⇒ (a+ b)2 ≥ 4ab.

Taking the positive square root of both sides, we have

a+ b ≥ 2
√
ab⇒

√
ab ≤ a+ b

2
.

Thus, we conclude
√
ab ≤ a+ b

2
.

2) Suppose r ∈ Q. Then we have two cases: (1) r ≤ 0 or (2) r > 0.
For case (1), suppose r ≤ 0. Then, we can easily choose n = 1 ∈ N since r ≤ 0 < 1, and we obtain

r < n.
For case (2), suppose r > 0. Then, by the Archimedean Property (with a = 1 > 0 and b = r > 0),

∃n ∈ N such that r < 1n = n. Thus, we have an n ∈ N with r < n.
Therefore, we conclude if r ∈ Q, then ∃n ∈ N with r < n.

Note: This shows (with a little work) that Q satisfies the Archimedean Property.
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