Homework 4 Solutions

4.1e-4.4e) Consider

$$S := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}.$$

1) Upper bounds: 1, 2, 19, ... 2) Lower bounds: 0, -1, $-\frac{5}{3}$, ... 3) sup S = 1, max S = 14) inf S = 0, min S does not exist

4.1g-4.4g) Consider

$$S := [0,1] \cup [2,3] = \{x : 0 \le x \le 1 \text{ or } 2 \le x \le 3\}.$$

1) Upper bounds: 3, π , 100, ... 2) Lower bounds: 0, -7, -51, ... 3) sup S = 3, max S = 34) inf S = 0, min S = 0

4.3j-4.4j) Consider

$$S := \left\{ 1 - \frac{1}{3^n} : n \in \mathbb{N} \right\} = \left\{ 1 - \frac{1}{3}, 1 - \frac{1}{9}, 1 - \frac{1}{27}, \dots \right\}.$$

3) sup S = 1, max S does not exist 4) inf $S = \frac{2}{3}$, min $S = \frac{2}{3}$

4.3s-4.4s) Consider

$$S := \left\{ \frac{1}{3^n} : n \text{ is prime} \right\} = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{11}, \dots \right\}.$$

3) sup $S = \frac{1}{2}$, max $S = \frac{1}{2}$ 4) inf S = 0, min S does not exist

Notes:

(1) In 3j, we could prove that sup S = 1 using the Archimedean Property and the fact that $3^n > n \quad \forall n \in \mathbb{N}$.

(2) In 4s, we could prove that $\inf S = 0$ using the Archimedean Property and the fact that there are infinitely many primes.

4.7) (b) Suppose $S, T \subset \mathbb{R}$ are nonempty bounded sets. Without loss of generality, we assume $S \geq \sup T$, so max{sup S, sup T} = sup S. Since $S \subset S \cup T$, we have sup $S \leq \sup (S \cup T)$ by problem 4.7a.

If $x \in S \cup T$, then either $x \in S$ or $x \in T$. If $x \in S$, then $x \leq \sup S$. If $x \in T$, then $x \leq \sup T \leq \sup S$. Thus, since $x \in S \cup T$ was arbitrary, we have $x \leq \sup S \forall x \in S \cup T$. Hence, $\sup S$ is an upper bound, and we obtain $\sup (S \cup T) \leq \sup S$.

Therefore, since we have $\sup S \leq \sup (S \cup T)$ and $\sup (S \cup T) \leq \sup S$, we conclude $\sup (S \cup T) = \sup S = \max \{\sup S, \sup T\}$.

4.8) (b) Suppose $S, T \subset \mathbb{R}$ are nonempty with $s \leq t \ \forall s \in \mathbb{S}$ and $\forall t \in T$. Let $t \in T$. Since $s \leq t \ \forall s \in S$, t is an upper bound for S, so sup $S \leq t$. Since $t \in T$ was arbitrary, we have sup $S \leq t \ \forall t \in T$. Therefore, sup S is a lower bound for T, and we conclude sup $S \leq \inf T$.

Worksheet 2 Solutions

7) Suppose $a, b \in \mathbb{R}$ with $a \ge 0$ and $b \ge 0$. Since $(a - b)^2 \ge 0$, we have $a^2 - 2ab + b^2 \ge 0$. Adding 4ab to both sides, gives us

$$a^2 + 2ab + b^2 \ge 4ab \Rightarrow (a+b)^2 \ge 4ab.$$

Taking the positive square root of both sides, we have

$$a+b \ge 2\sqrt{ab} \Rightarrow \sqrt{ab} \le \frac{a+b}{2}.$$

Thus, we conclude

$$\sqrt{ab} \le \frac{a+b}{2}.$$

2) Suppose $r \in \mathbb{Q}$. Then we have two cases: (1) $r \leq 0$ or (2) r > 0.

For case (1), suppose $r \leq 0$. Then, we can easily choose $n = 1 \in \mathbb{N}$ since $r \leq 0 < 1$, and we obtain r < n.

For case (2), suppose r > 0. Then, by the Archimedean Property (with a = 1 > 0 and b = r > 0), $\exists n \in \mathbb{N}$ such that r < 1n = n. Thus, we have an $n \in \mathbb{N}$ with r < n.

Therefore, we conclude if $r \in \mathbb{Q}$, then $\exists n \in \mathbb{N}$ with r < n.

Note: This shows (with a little work) that \mathbb{Q} satisfies the Archimedean Property.