
Homework 5 Solutions

4.10) Suppose a > 0. By two applications of the Archimedean Property, ∃m1,m2 ∈ N such that a < m1

and 1
a < m2. Choose n = max {m1,m2}, so n ≥ m1 and n ≥ m2. Then, we must have a < n and 1

a < n.
Rearranging the second inequality and combining, we obtain 1

n < a < n.
Therefore, if a > 0, then ∃n ∈ N such that 1

n < a < n.

4.11) Suppose a, b ∈ R where a < b, but there are only a finite number of rationals in the interval (a, b).
Denote these finite number of rationals by the set R = {r1, r2, ..., rn} for some n ∈ N. Since R is finite, the
maximum exists, so let m = max R where a < m < b by definition. By the Denseness of Q, ∃r ∈ Q such
that m < r < b, which tells us a < m < r < b. But m is the maximum rational number of all the rationals
in (a, b). Contradiction!

Therefore, if a, b ∈ R with a < b, there are infinitely many rational between a and b.

4.12) Suppose that a, b ∈ R with a < b. Subtracting
√

2 to both sides of the inequality, we get
a−
√

2 < b−
√

2. By the Denseness of Q, ∃r ∈ Q with a−
√

2 < r < b−
√

2. Adding
√

2 to all sides, we
obtain a < r+

√
2 < b. Let x = r+

√
2, and note that x ∈ I since r ∈ Q and

√
2 ∈ I. Thus, we found x ∈ I

with a < x < b.
Therefore, if a < b, then ∃x ∈ I such that a < x < b.

Note: We just showed that the irrationals are also dense in R. Moreover, one can show that there are
infinitely many irrationals between any two numbers, analogous to the statement in problem 4.11.

4.14) (a) Let A,B ⊂ R are nonempty and S := {a + b : a ∈ A, b ∈ B}.
Let s ∈ S. So, ∃a ∈ A and ∃b ∈ B such that s = a + b. Then, s = a + b ≤ sup A + sup B, and

sup A + sup B is an upper bound for S. Thus, we have

sup S ≤ sup A + sup B. (1)

Let a ∈ A and b ∈ B. Then, a + b ≤ sup S, so a ≤ sup S − b. Since a was arbitrary, we have
a ≤ sup S − b ∀a ∈ A and sup S − b is an upper bound for A, so sup A ≤ sup S − b. Since b was
arbitrary, we obtain

sup A ≤ sup S − b ∀b ∈ B.

Rewriting this, we have b ≤ sup S − sup A ∀b ∈ B. and sup S − sup A is an upper bound for B, so
sup B ≤ sup S − sup A. Hence, rearranging this equation gives us

sup A + sup B ≤ sup S. (2)

Therefore, by (1) and (2), we conclude that

sup S = sup A + sup B.
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4.15) Let a, b ∈ R. Suppose that a ≤ b + 1
n ∀n ∈ N, but a > b. Then a− b > 0, and ∃n ∈ N such that

1
n < a− b by the Archimedean Property. Thus, rewriting yields b+ 1

n < a for some n ∈ N, but we assumed
a ≤ b + 1

n ∀n ∈ N. Contradiction!
Therefore, we conclude if a ≤ b + 1

n ∀n ∈ N, then a ≤ b.
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Worksheet 3 Solutions

1) Define E := {r ∈ Q : r > 0 and r2 < 2}. Let r ∈ E. Since r2 < 2 < 4 and r was arbitrary, 4 must be
an upper bound for E. Notice, that 1 ∈ E so E ⊂ R is nonempty. For the following steps (A-C), suppose
that s = sup E exists.

A) If s ∈ Q, then s2 6= 2 since we know that
√

2 ∈ I.

Now, define r =
2s + 2

s + 2
.

B) Suppose s2 > 2. Then, through algebraic manipulation, we get

2s2 > 4⇒ 4s2 + 8s + 4 > 2s2 + 8s + 8⇒ (2s + 2)2 > 2(s2 + 4s + 4)⇒ (2s + 2)2 > 2(s + 2)2

⇒ (2s + 2)2

(s + 2)2
> 2⇒ r2 =

(
2s + 2

s + 2

)2

> 2.

Thus, we have r2 > 2
Clearly, we have r > 0 since s > 0. Also, we obtain

2 < s2 ⇒ 2s + 2 < s2 + 2s = s(s + 2)⇒ 2s + 2

s + 2
< s⇒ r < s.

Hence, 0 < r < s.
Therefore, we conclude if s2 > 2, then r2 > 2 and 0 < r < s. In this scenario, r is an upper bound of

E with r < s, so s cannot be the least upper bound (i.e. s 6= sup E).

C) Suppose s2 < 2. Then, through algebraic manipulation, we get

2s2 < 4⇒ 4s2 + 8s + 4 < 2s2 + 8s + 8⇒ (2s + 2)2 < 2(s2 + 4s + 4)⇒ (2s + 2)2 < 2(s + 2)2

⇒ (2s + 2)2

(s + 2)2
< 2⇒ r2 =

(
2s + 2

s + 2

)2

< 2.

Thus, we have r2 < 2.
Since s2 < 2, we can also obtain

2 > s2 ⇒ 2s + 2 > s2 + 2s = s(s + 2)⇒ 2s + 2

s + 2
> s⇒ r > s.

Hence, s < r.
Therefore, we conclude if s2 < 2, then r2 < 2 and s < r. But, clearly r > 0 as well, so r ∈ E with

s < r, and in this scenario, s cannot be an upper bound much less the least upper bound (i.e. s 6= sup E).

Note: If s = sup E exists in Q, then one of the three cases must occur: A) s2 = 2, B) s2 > 2, or C)
s2 < 2. We just went through all these three cases above and showed how each led to a contradiction. This
proves that s = sup E is not a rational number.
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But, by the Completeness Axiom, s = sup E ∈ R exists, so we must have s ∈ I since s /∈ Q. Also, this
irrational number will still not satisfy B) or C), but it will satisfy A) (i.e. s2 = 2). The next problem goes
over this fact.

2) Let S := {x ∈ R : x > 0 and x2 < 3}.

A) Clearly, 1 ∈ S, so S is nonempty. Also, 2 is a upper bound for S since ∀x ∈ S, x2 < 3 < 4 implies
x < 2.

By the Completeness Axiom, sup S ∈ R exists. Now, let t = sup S.

B) Suppose t2 < 3. So, we have

t2 < 3⇒ t <
√

3⇒
√

3− t > 0.

Then, by the Archimedean Property, ∃n ∈ N such that 1
n <
√

3− t. Rewriting this inequality gives us

1

n
<
√

3− t⇒ t +
1

n
<
√

3⇒
(
t +

1

n

)2

< 3.

Thus, we conclude if t2 < 3, ∃n ∈ N such that (t + 1
n)2 < 3. In this scenario, t + 1

n ∈ S and t < t + 1
n , so t

cannot be an upper bound for S much less the least upper bound (i.e. t 6= sup S).

C) Suppose t2 > 3. So, we have

t2 > 3⇒ t >
√

3⇒ t−
√

3 > 0.

Then, by the Archimedean Property, ∃m ∈ N such that 1
m < t−

√
3. Rewriting this inequality gives us

1

m
< t−

√
3⇒ t− 1

m
>
√

3⇒
(
t− 1

m

)2

> 3.

Thus, we conclude if t2 > 3, ∃m ∈ N such that (t− 1
m)2 > 3. In this scenario, t− 1

m is an upper bound of
S and t− 1

n < t, so t cannot be the least upper bound (i.e. t 6= sup S).

Note: If t = sup S exists in R, then one of the three cases must occur: A) t2 = 3, B) t2 > 3, or
C) t2 < 2. We just showed above that cases B) and C) lead to contradictions. Thus, by the process of
elimination, we must have t2 = 3. So we just proved that ∃t ∈ R such that t2 = 3. Moreover, in light of
problem 1), t must be irrational, which can be proven by other means as well.

4


