Homework 6 Solutions

7.3) (a) $\lim_{n \to \infty} \frac{n}{n+1} = 1$ (f) $\lim_{n \to \infty} 2^{\frac{1}{n}} = 2^{0} = 1$ (i) $\lim_{n \to \infty} \frac{(-1)^{n}}{n} = 0$ (k) $\lim_{n \to \infty} \frac{9n^{2} - 18}{6n + 18}$ does not exist, so the sequence diverges. p) $\lim_{n \to \infty} \frac{2^{n+1} + 5}{2^{n} - 7} = 2$ q) $\lim_{n \to \infty} \frac{3^{n}}{n!} = 0$ r) $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{2} = 1^{2} = 1$ s) $\lim_{n \to \infty} \frac{4n^{2} + 3}{3n^{2} - 2} = \frac{4}{3}$ t) $\lim_{n \to \infty} \frac{6n + 4}{9n^{2} + 7} = 0$

For the next problem, we need the following fact (which is an optional homework assignment): **Proposition 1** If $x \in \mathbb{I}$ and $r \in \mathbb{Q}$, then $r \cdot x \in \mathbb{I}$.

7.4) (a) Let $x_n = \frac{\sqrt{2}}{n}$. Then $x_n = \frac{1}{n} \cdot \sqrt{2} \in \mathbb{I} \quad \forall n \in \mathbb{N} \text{ since } \frac{1}{n} \in \mathbb{Q}, \ \frac{1}{n} \neq 0, \text{ and } \sqrt{2} \in \mathbb{I}$. Moreover, we have $\lim_{n \to \infty} x_n = 0$