
Homework 7 Solutions

8.2) (a) Let ε > 0 be given. Notice that

|sn − s| =
∣∣∣∣ n

n2 + 1
− 0

∣∣∣∣ =
n

n2 + 1
<

n

n2
=

1

n

So, we have

|sn − s| < ε⇔ n

n2 + 1
<

1

n
< ε⇔ 1

n
< ε⇔ n >

1

ε

Choose N =
1

ε
. Thus, ∀n > N , then

∣∣∣∣ n

n2 + 1
− 0

∣∣∣∣ < ε.

Therefore, we conclude lim
n→∞

n

n2 + 1
= 0.

(c) Let ε > 0 be given. Notice that

|sn − s| =
∣∣∣∣4n+ 3

7n− 5
− 4

7

∣∣∣∣ =

∣∣∣∣7(4n+ 3)− 4(7n− 5)

7(7n− 5)

∣∣∣∣ =
41

7(7n− 5)

So, we have

|sn − s| < ε⇔ 41

7(7n− 5)
< ε⇔ 41

7ε
< 7n− 5⇔ n >

1

7

(
41

7ε
+ 5

)
Choose N =

1

7

(
41

7ε
+ 5

)
. Thus, ∀n > N , then

∣∣∣∣4n+ 3

7n− 5
− 4

7

∣∣∣∣ < ε.

Therefore, we conclude lim
n→∞

4n+ 3

7n− 5
=

4

7
.

(d) Let ε > 0 be given. Notice that

|sn − s| =
∣∣∣∣2n+ 4

5n+ 2
− 2

5

∣∣∣∣ =

∣∣∣∣5(2n+ 4)− 2(5n+ 2)

5(5n+ 2)

∣∣∣∣ =
16

5(5n+ 2)

So, we have

|sn − s| < ε⇔ 16

5(5n+ 2)
< ε⇔ 16

5ε
< 5n− 2⇔ n >

1

5

(
16

5ε
+ 2

)
Choose N =

1

5

(
16

5ε
+ 2

)
. Thus, ∀n > N , then

∣∣∣∣2n+ 4

5n+ 2
− 2

5

∣∣∣∣ < ε.

Therefore, we conclude lim
n→∞

2n+ 4

5n+ 2
=

2

5
.

(e) Let ε > 0 be given. Notice that

|sn − s| =
∣∣∣∣sinnn − 0

∣∣∣∣ =
| sinn|
n

≤ 1

n

So, we have

|sn − s| < ε⇔ | sinn|
n

≤ 1

n
< ε⇔ n >

1

ε

1



Choose N =
1

ε
. Thus, ∀n > N , then

∣∣∣∣sinnn − 0

∣∣∣∣ < ε.

Therefore, we conclude lim
n→∞

sinn

n
= 0.

8.3) (a) Suppose that we have {sn} a sequence of positive numbers with lim
n→∞

sn = 0. Let ε > 0 be

given. Notice that
|
√
sn − 0)| =

√
sn < ε⇔ sn < ε2 ⇔ |sn − 0| < ε2

Since lim
n→∞

sn = 0, ∃N1 ∈ R such that ∀n > N1, then |sn − 0| < ε2. Choose N = N1. Then, ∀n > N ,

then |√sn − 0| < ε.
Therefore, we conclude if {sn} is a sequence of positive numbers with lim

n→∞
sn = 0, then lim

n→∞

√
sn = 0.

8.4) Suppose {tn} is a bounded sequence and {sn} is a sequence with lim
n→∞

sn = 0. Let ε > 0 be given.

Notice
|sntn − 0| = |sntn| = |sn||tn|.

Since {tn} is bounded, ∃M > 0 such that |tn| ≤ M ∀n ∈ N. Since lim
n→∞

sn = 0, ∃N1 ∈ R such that

∀n > N1, then |sn − 0| < ε

M
. Choose N = N1. Thus, ∀n > N , then

|sntn − 0| = |sn||tn| ≤
ε

M
M = ε.

Therefore, we conclude if {tn} is a bounded sequence and {sn} is a sequence with lim
n→∞

sn = 0, then

lim
n→∞

sntn = 0.

8.5) (b) Suppose {sn} and {tn} are sequences such that |sn| ≤ tn ∀n ∈ N with lim
n→∞

tn = 0. Since

|sn| ≤ tn ∀n ∈ N, we have
−tn ≤ sn ≤ tn ∀n ∈ N.

Since lim
n→∞

tn = 0 and consequently, lim
n→∞

−tn = 0, we conclude lim
n→∞

sn = 0 by the Squeeze Theorem.

8.6) (a) (Remark: since this is a biconditional we have to prove both implications ⇐ and ⇒)
(⇒) Suppose lim

n→∞
sn = 0. Let ε > 0 be given. Then, ∃N ∈ R such that ∀n > N , then |sn − 0| < ε.

We choose this N given to us. Thus, ∀n > N , then

||sn| − 0| = |sn| < ε.

Therefore, we conclude if lim
n→∞

sn = 0, then lim
n→∞

|sn| = 0.

(⇐) Suppose lim
n→∞

|sn| = 0. Since −|sn| ≤ sn ≤ |sn| ∀n ∈ N, lim
n→∞

|sn| = 0, and consequently,

lim
n→∞

−|sn| = 0, we conclude lim
n→∞

sn = 0 by the Squeeze Theorem.
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8.7) (a) Consider the sequence {sn} with sn = cos
(nπ

3

)
∀n ∈ N. Notice that

sn =


1 if 6|n
1
2 if 6|(n− 1) or 6|(n− 5)

−1
2 if 6|(n− 2) or 6|(n− 4)

−1 if 6|(n− 3)

Choose ε = 1, and let N ∈ R be given. By Archimedian Property, ∃n∗ ∈ N such that n∗ > N . Now
choose n > n∗ > N such that it’s the next natural number which satisfies 6|(n − 1) (which is always
possible since there are an infinite number of positive solutions to n− 1 = 6k where k can be any integer).
Then, we have

|sn − 1| = | − 1− 1| = 2 ≥ 1 = ε.

So |sn − 1| ≥ ε.
Thus, we conclude lim

n→∞
sn 6= 1

(c) This will be an optional homework problem.
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