
Homework 8 Solutions

Theorem (Squeeze Theorem). If {an}, {bn}, and {sn} are sequences such that an ≤ sn ≤ bn ∀n > N
where N ∈ R and lim

n→∞
an = lim

n→∞
bn = L. Then, we have lim

n→∞
sn = L.

9.3) Supose that lim
n→∞

an = a and lim
n→∞

bn = b. Consider the following sequence

sn =
a3n + 4an
b2n + 1

.

Then, we have

lim
n→∞

sn = lim
n→∞

a3n + 4an
b2n + 1

=
lim
n→∞

a3n + 4an

lim
n→∞

b2n + 1
=

lim
n→∞

a3n + lim
n→∞

4an

lim
n→∞

b2n + lim
n→∞

1
,

using Theorems 9.6 and 9.3. Continuing this process by using Theorems 9.4 and 9.2, we obtain

lim
n→∞

sn =

(
lim
n→∞

an

)3
+ 4 lim

n→∞
an(

lim
n→∞

bn

)2
+ 1

=
a3 + 4a

b2 + 1
.

Thus, we conclude

lim
n→∞

sn =
a3 + 4a

b2 + 1
.

9.4) Let s1 = 1 and sn+1 =
√
sn + 1 (i.e. a recursion relation).

(a) s1 = 1, s2 =
√

2, s3 =
√√

2 + 1, and s4 =

√√√
2 + 1 + 1.

(b) Suppose that {sn} converges, and let lim
n→∞

sn = s. Taking the limit of both sides of the recursion

relation, we obtain

lim
n→∞

sn+1 = lim
n→∞

√
sn + 1⇒ s =

√
s+ 1⇒ s2 = s+ 1⇒ s2 − s− 1 = 0⇒ s =

1±
√

5

2
.

Since sn > 0 ∀n ∈ N, we conclude

s =
1 +
√

5

2
.

9.5) Let t1 = 1 and tn+1 =
t2n + 2

2tn
(i.e. a recursion relation). Suppose that {tn} converges, and let

lim
n→∞

tn = t. Taking the limit of both sides of the recursion relation, we obtain

lim
n→∞

tn+1 = lim
n→∞

t2n + 2

2tn
⇒ t =

t2 + 2

2t
⇒ 2t2 = t2 + 2⇒ t = ±

√
2.

Since tn > 0 ∀n ∈ N, we conclude t =
√

2.
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Worksheet 4 Solutions

1) Supose that lim
n→∞

sn = s. Let ε > 0 be given. Since {sn} converges to s, ∃N ∈ R such that ∀n > N ,

then |sn−s| < ε. We choose this N . Thus, we have ∀n > N , then

∣∣∣∣|sn|−|s|∣∣∣∣ ≤ |sn−s| < ε, (The inequality

used here, which is on your handout, is sometimes referred to as the Reverse Triangle Inequality).
Therefore, we conclude lim

n→∞
|sn| = |s|.

2) Suppose that lim
n→∞

sn = L and f is continuous at L. Let ε > 0 be given. Since f is continuous at

L, by definition, ∃δ > 0 such that

if |x− L| < δ ⇒ |f(x)− f(L)| < ε. (1)

Also, since lim
n→∞

sn = L, ∃N ∈ R such that

∀n > N ⇒ |sn − L| < δ. (2)

Thus, by combining (1) and (2), we have

∀n > N ⇒ |f(sn)− f(L)| < ε.

Therefore, we conclude lim
n→∞

f(sn) = f(L).

3) Suppose that lim
n→∞

sn = s and lim
n→∞

tn = t

(a) Then we have lim
n→∞

(sn − s) = 0 and lim
n→∞

(tn − t) = 0 by Theorems 9.3.

For the next part, one can show the following is true using the definition of the limit (which is an
optional homework assignment):

Proposition 1. If lim
n→∞

sn = 0 and lim
n→∞

tn = 0, then lim
n→∞

sntn = 0.

(b) By Proposition 1 and part (a), we have lim
n→∞

(sn − s)(tn − t) = 0. Thus, we can obtain through

algebra lim
n→∞

(sntn − stn − stn + st) = 0

(c) Using addition by zero three times, we get

lim
n→∞

sntn = lim
n→∞

sntn − stn − snt+ st+ stn + snt− st

= lim
n→∞

(sntn − stn − stn + st) + lim
n→∞

stn + lim
n→∞

snt− lim
n→∞

st,

where the last equality uses Theorem 9.3 many times.

2



(d) Finally, starting with part (c), we arrive at

lim
n→∞

sntn = 0 + s lim
n→∞

tn + t lim
n→∞

sn − st = st+ st− st = st,

using Theorem 9.2 twice.

Remark: This gives an alternate proof of Theorem 9.4.

4) Suppose that {sn} is bounded. Since {sn} is bounded, we have ∃M > 0 such that |sn| ≤M ∀n ∈ N.
So we have

−M ≤ sn ≤M ∀n ∈ N⇔ −M
n
≤ sn

n
≤ M

n
∀n ∈ N.

Since lim
n→∞

−M
n

= lim
n→∞

M

n
= 0, we have lim

n→∞

sn
n

= 0, by the Squeeze Theorem.

Therefore, if {sn} is bounded, then lim
n→∞

sn
n

= 0.
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