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Now we apply the induction hypothesis Pn to obtain

| sin(n+ 1)x| ≤ n| sin x|+ | sinx| = (n+ 1)| sin x|.

Thus Pn+1 holds. Finally, the result holds for all n by mathematical
induction.

Exercises

1.1 Prove 12+22+ · · ·+n2 = 1
6n(n+1)(2n+1) for all positive integers n.

1.2 Prove 3 + 11 + · · ·+ (8n− 5) = 4n2 − n for all positive integers n.

1.3 Prove 13+23+ · · ·+n3 = (1+2+ · · ·+n)2 for all positive integers n.

1.4 (a) Guess a formula for 1+ 3+ · · ·+ (2n− 1) by evaluating the sum
for n = 1, 2, 3, and 4. [For n = 1, the sum is simply 1.]

(b) Prove your formula using mathematical induction.

1.5 Prove 1 + 1
2 + 1

4 + · · ·+ 1
2n = 2− 1

2n for all positive integers n.

1.6 Prove (11)n − 4n is divisible by 7 when n is a positive integer.

1.7 Prove 7n − 6n− 1 is divisible by 36 for all positive integers n.

1.8 The principle of mathematical induction can be extended as follows.
A list Pm, Pm+1, . . . of propositions is true provided (i) Pm is true,
(ii) Pn+1 is true whenever Pn is true and n ≥ m.

(a) Prove n2 > n+ 1 for all integers n ≥ 2.

(b) Prove n! > n2 for all integers n ≥ 4. [Recall n! = n(n−1) · · · 2 ·1;
for example, 5! = 5 · 4 · 3 · 2 · 1 = 120.]

1.9 (a) Decide for which integers the inequality 2n > n2 is true.

(b) Prove your claim in (a) by mathematical induction.

1.10 Prove (2n + 1) + (2n + 3) + (2n + 5) + · · · + (4n − 1) = 3n2 for all
positive integers n.

1.11 For each n ∈ N, let Pn denote the assertion “n2 + 5n+ 1 is an even
integer.”

(a) Prove Pn+1 is true whenever Pn is true.

(b) For which n is Pn actually true? What is the moral of this
exercise?
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1.12 For n ∈ N, let n! [read “n factorial”] denote the product 1 · 2 · 3 · · ·n.
Also let 0! = 1 and define

(
n

k

)
=

n!

k!(n− k)!
for k = 0, 1, . . . , n. (1.1)

The binomial theorem asserts that

(a+b)n=
(n
0

)
an+

(n
1

)
an−1b+

(n
2

)
an−2b2+ · · ·+

( n

n−1

)
abn−1+

(n
n

)
bn

=an+nan−1b+
1

2
n(n−1)an−2b2+ · · ·+nabn−1+bn.

(a) Verify the binomial theorem for n = 1, 2, and 3.

(b) Show
(
n
k

)
+
(

n
k−1

)
=
(
n+1
k

)
for k = 1, 2, . . . , n.

(c) Prove the binomial theorem using mathematical induction and
part (b).

§2 The Set Q of Rational Numbers

Small children first learn to add and to multiply positive integers.
After subtraction is introduced, the need to expand the number sys-
tem to include 0 and negative integers becomes apparent. At this
point the world of numbers is enlarged to include the set Z of all
integers. Thus we have Z = {0, 1,−1, 2,−2, . . .}.

Soon the space Z also becomes inadequate when division is in-
troduced. The solution is to enlarge the world of numbers to include
all fractions. Accordingly, we study the space Q of all rational num-
bers, i.e., numbers of the form m

n where m,n ∈ Z and n ̸= 0. Note

that Q contains all terminating decimals such as 1.492 = 1,492
1,000 . The

connection between decimals and real numbers is discussed in 10.3
on page 58 and in §16. The space Q is a highly satisfactory alge-
braic system in which the basic operations addition, multiplication,
subtraction and division can be fully studied. No system is perfect,
however, and Q is inadequate in some ways. In this section we will
consider the defects of Q. In the next section we will stress the good
features of Q and then move on to the system of real numbers.

The setQ of rational numbers is a very nice algebraic system until
one tries to solve equations like x2 = 2. It turns out that no rational
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Proof
In Example 1 we showed b is a solution of 49x4 − 56x2 + 4 = 0. By
Theorem 2.2, the only possible rational solutions are

±1,±1/7,±1/49,±2,±2/7,±2/49,±4,±4/7,±4/49.

To complete our proof, all we need to do is substitute these 18 can-
didates into the equation 49x4 − 56x2 + 4 = 0. This prospect is
so discouraging, however, that we choose to find a more clever ap-
proach. In Example 1, we also showed 12 = (4− 7b2)2. Now if b were
rational, then 4 − 7b2 would also be rational [Exercise 2.6], so the
equation 12 = x2 would have a rational solution. But the only pos-
sible rational solutions to x2 − 12 = 0 are ±1,±2,±3,±4,±6,±12,
and these all can be eliminated by mentally substituting them into
the equation. We conclude 4 − 7b2 cannot be rational, so b cannot
be rational.

As a practical matter, many or all of the rational candidates given
by the Rational Zeros Theorem can be eliminated by approximating
the quantity in question. It is nearly obvious that the values in Ex-
amples 2 through 5 are not integers, while all the rational candidates
are. The number b in Example 6 is approximately 0.2767; the nearest
rational candidate is +2/7 which is approximately 0.2857.

It should be noted that not all irrational-looking expressions are
actually irrational. See Exercise 2.7.

2.4 Remark.
While admiring the efficient Rational Zeros Theorem for finding
rational zeros of polynomials with integer coefficients, you might
wonder how one would find other zeros of these polynomials, or ze-
ros of other functions. In §31, we will discuss the most well-known
method, called Newton’s method, and its cousin, the secant method.
That discussion can be read now; only the proof of the theorem uses
material from §31.

Exercises

2.1 Show
√
3,

√
5,

√
7,

√
24, and

√
31 are not rational numbers.

2.2 Show 3
√
2, 7

√
5 and 4

√
13 are not rational numbers.
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2.3 Show
√
2 +

√
2 is not a rational number.

2.4 Show
3
√

5−
√
3 is not a rational number.

2.5 Show [3 +
√
2]2/3 is not a rational number.

2.6 In connection with Example 6, discuss why 4 − 7b2 is rational if b is
rational.

2.7 Show the following irrational-looking expressions are actually rational

numbers: (a)
√
4 + 2

√
3−

√
3, and (b)

√
6 + 4

√
2−

√
2.

2.8 Find all rational solutions of the equation x8−4x5+13x3−7x+1 = 0.

§3 The Set R of Real Numbers

The set Q is probably the largest system of numbers with which
you really feel comfortable. There are some subtleties but you have
learned to cope with them. For example, Q is not simply the set of
symbols m/n, where m,n ∈ Z, n ̸= 0, since we regard some pairs of
different looking fractions as equal. For example, 2

4 and 3
6 represent

the same element of Q. A rigorous development of Q based on Z,
which in turn is based on N, would require us to introduce the notion
of equivalence classes. In this book we assume a familiarity with and
understanding of Q as an algebraic system. However, in order to
clarify exactly what we need to know about Q, we set down some of
its basic axioms and properties.

The basic algebraic operations in Q are addition and multiplica-
tion. Given a pair a, b of rational numbers, the sum a + b and the
product ab also represent rational numbers. Moreover, the following
properties hold.

A1. a+ (b+ c) = (a+ b) + c for all a, b, c.
A2. a+ b = b+ a for all a, b.
A3. a+ 0 = a for all a.
A4. For each a, there is an element −a such that a+ (−a) = 0.
M1. a(bc) = (ab)c for all a, b, c.
M2. ab = ba for all a, b.
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FIGURE 3.2

Exercises

3.1 (a) Which of the properties A1–A4, M1–M4, DL, O1–O5 fail for N?

(b) Which of these properties fail for Z?

3.2 (a) The commutative law A2 was used in the proof of (ii) in
Theorem 3.1. Where?

(b) The commutative law A2 was also used in the proof of (iii) in
Theorem 3.1. Where?

3.3 Prove (iv) and (v) of Theorem 3.1.

3.4 Prove (v) and (vii) of Theorem 3.2.

3.5 (a) Show |b| ≤ a if and only if −a ≤ b ≤ a.

(b) Prove ||a|− |b|| ≤ |a− b| for all a, b ∈ R.

3.6 (a) Prove |a+ b+ c| ≤ |a|+ |b|+ |c| for all a, b, c ∈ R. Hint : Apply the
triangle inequality twice. Do not consider eight cases.

(b) Use induction to prove

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|

for n numbers a1, a2, . . . , an.

3.7 (a) Show |b| < a if and only if −a < b < a.

(b) Show |a− b| < c if and only if b− c < a < b+ c.

(c) Show |a− b| ≤ c if and only if b− c ≤ a ≤ b+ c.

3.8 Let a, b ∈ R. Show if a ≤ b1 for every b1 > b, then a ≤ b.
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Since b − a > 0, the Archimedean property shows there exists an
n ∈ N such that

n(b− a) > 1, and hence bn− an > 1. (2)

From this, it is fairly evident that there is an integer m between an
and bn, so that (1) holds. However, the proof that such an m exists is
a little delicate. We argue as follows. By the Archimedean property
again, there exists an integer k > max{|an|, |bn|}, so that

−k < an < bn < k.

Then the sets K = {j ∈ Z : −k ≤ j ≤ k} and {j ∈ K : an < j}
are finite, and they are nonempty, since they both contain k. Let
m = min{j ∈ K : an < j}. Then −k < an < m. Since m > −k, we
have m− 1 in K, so the inequality an < m− 1 is false by our choice
of m. Thus m − 1 ≤ an and, using (2), we have m ≤ an + 1 < bn.
Since an < m < bn, (1) holds.

Exercises

4.1 For each set below that is bounded above, list three upper bounds for
the set.2 Otherwise write “NOT BOUNDED ABOVE” or “NBA.”
(a) [0, 1] (b) (0, 1)
(c) {2, 7} (d) {π, e}
(e) { 1

n : n ∈ N} (f) {0}
(g) [0, 1] ∪ [2, 3] (h) ∪∞

n=1[2n, 2n+ 1]
(i) ∩∞

n=1[− 1
n , 1 +

1
n ] (j) {1− 1

3n : n ∈ N}
(k) {n+ (−1)n

n : n ∈ N} (l) {r ∈ Q : r < 2}
(m) {r ∈ Q : r2 < 4} (n) {r ∈ Q : r2 < 2}
(o) {x ∈ R : x < 0} (p) {1, π

3 ,π
2, 10}

(q) {0, 1, 2, 4, 8, 16} (r) ∩∞
n=1(1− 1

n , 1 +
1
n )

(s) { 1
n : n ∈ N and n is prime} (t) {x ∈ R : x3 < 8}

(u) {x2 : x ∈ R} (v) {cos(nπ3 ) : n ∈ N}
(w) {sin(nπ3 ) : n ∈ N}

4.2 Repeat Exercise 4.1 for lower bounds.

4.3 For each set in Exercise 4.1, give its supremum if it has one. Otherwise
write “NO sup.”

2An integer p ≥ 2 is a prime provided the only positive factors of p are 1 and p.



Exercises 27

4.4 Repeat Exercise 4.3 for infima [plural of infimum].

4.5 Let S be a nonempty subset of R that is bounded above. Prove if
supS belongs to S, then supS = maxS. Hint : Your proof should be
very short.

4.6 Let S be a nonempty bounded subset of R.

(a) Prove inf S ≤ supS. Hint : This is almost obvious; your proof
should be short.

(b) What can you say about S if inf S = supS?

4.7 Let S and T be nonempty bounded subsets of R.

(a) Prove if S ⊆ T , then inf T ≤ inf S ≤ supS ≤ supT .

(b) Prove sup(S∪T ) = max{supS, supT}. Note: In part (b), do not
assume S ⊆ T .

4.8 Let S and T be nonempty subsets of R with the following property:
s ≤ t for all s ∈ S and t ∈ T .

(a) Observe S is bounded above and T is bounded below.

(b) Prove supS ≤ inf T .

(c) Give an example of such sets S and T where S ∩ T is nonempty.

(d) Give an example of sets S and T where supS = inf T and S ∩ T
is the empty set.

4.9 Complete the proof that inf S = − sup(−S) in Corollary 4.5 by
proving (1) and (2).

4.10 Prove that if a > 0, then there exists n ∈ N such that 1
n < a < n.

4.11 Consider a, b ∈ R where a < b. Use Denseness of Q 4.7 to show there
are infinitely many rationals between a and b.

4.12 Let I be the set of real numbers that are not rational; elements of I
are called irrational numbers. Prove if a < b, then there exists x ∈ I
such that a < x < b. Hint : First show {r +

√
2 : r ∈ Q} ⊆ I.

4.13 Prove the following are equivalent for real numbers a, b, c. [Equivalent
means that either all the properties hold or none of the properties
hold.]

(i) |a− b| < c,

(ii) b− c < a < b+ c,
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(iii) a ∈ (b− c, b+ c).

Hint : Use Exercise 3.7(b).

4.14 Let A and B be nonempty bounded subsets of R, and let A + B be
the set of all sums a+ b where a ∈ A and b ∈ B.

(a) Prove sup(A+B) = supA+supB. Hint: To show supA+supB ≤
sup(A + B), show that for each b ∈ B, sup(A + B) − b is an
upper bound for A, hence supA ≤ sup(A + B) − b. Then show
sup(A +B) − supA is an upper bound for B.

(b) Prove inf(A+B) = inf A + inf B.

4.15 Let a, b ∈ R. Show if a ≤ b + 1
n for all n ∈ N, then a ≤ b. Compare

Exercise 3.8.

4.16 Show sup{r ∈ Q : r < a} = a for each a ∈ R.

§5 The Symbols +∞ and −∞
The symbols +∞ and −∞ are extremely useful even though they
are not real numbers. We will often write +∞ as simply ∞. We will
adjoin +∞ and −∞ to the set R and extend our ordering to the set
R ∪ {−∞,+∞}. Explicitly, we will agree that −∞ ≤ a ≤ +∞ for
all a in R∪ {−∞,∞}. This provides the set R∪ {−∞,+∞} with an
ordering that satisfies properties O1, O2 and O3 of §3. We emphasize
we will not provide the set R∪ {−∞,+∞} with any algebraic struc-
ture. We may use the symbols +∞ and −∞, but we must continue
to remember they do not represent real numbers. Do not apply a
theorem or exercise that is stated for real numbers to the symbols
+∞ or −∞.

It is convenient to use the symbols +∞ and −∞ to extend the
notation established in Example 1(b) of §4 to unbounded intervals.
For real numbers a, b ∈ R, we adopt the following

[a,∞) = {x ∈ R : a ≤ x}, (a,∞) = {x ∈ R : a < x},
(−∞, b] = {x ∈ R : x ≤ b}, (−∞, b) = {x ∈ R : x < b}.

We occasionally also write (−∞,∞) for R. [a,∞) and (−∞, b] are
called closed intervals or unbounded closed intervals, while (a,∞) and
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Exercises

5.1 Write the following sets in interval notation:
(a) {x ∈ R : x < 0} (b) {x ∈ R : x3 ≤ 8}
(c) {x2 : x ∈ R} (d) {x ∈ R : x2 < 8}

5.2 Give the infimum and supremum of each set listed in Exercise 5.1.

5.3 Give the infimum and supremum of each unbounded set listed in
Exercise 4.1.

5.4 Let S be a nonempty subset of R, and let −S = {−s : s ∈ S}. Prove
inf S = − sup(−S). Hint : For the case −∞ < inf S, simply state that
this was proved in Exercise 4.9.

5.5 Prove inf S ≤ supS for every nonempty subset of R. Compare
Exercise 4.6(a).

5.6 Let S and T be nonempty subsets of R such that S ⊆ T . Prove inf T ≤
inf S ≤ supS ≤ supT . Compare Exercise 4.7(a).

5.7 Finish Example 1 by verifying the equality involving infimums.

§6 * A Development of R
There are several ways to give a careful development of R based onQ.
We will briefly discuss one of them and give suggestions for further
reading on this topic. [See the remarks about enrichment sections in
the preface.]

To motivate our development we begin by observing

a = sup{r ∈ Q : r < a} for each a ∈ R;

see Exercise 4.16. Note the intimate relationship: a ≤ b if and only
if {r ∈ Q : r < a} ⊆ {r ∈ Q : r < b} and, moreover, a = b if and
only if {r ∈ Q : r < a} = {r ∈ Q : r < b}. Subsets α of Q having the
form {r ∈ Q : r < a} satisfy these properties:

(i) α ̸= Q and α is not empty,
(ii) If r ∈ α, s ∈ Q and s < r, then s ∈ α,
(iii) α contains no largest rational.
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Exercises

6.1 Consider s, t ∈ Q. Show

(a) s ≤ t if and only if s∗ ⊆ t∗;

(b) s = t if and only if s∗ = t∗;

(c) (s+ t)∗ = s∗ + t∗. Note that s∗ + t∗ is a sum of Dedekind cuts.

6.2 Show that if α and β are Dedekind cuts, then so is α+ β = {r1 + r2 :
r1 ∈ α and r2 ∈ β}.

6.3 (a) Show α+ 0∗ = α for all Dedekind cuts α.

(b) We claimed, without proof, that addition of Dedekind cuts satis-
fies property A4. Thus if α is a Dedekind cut, there is a Dedekind
cut −α such that α+ (−α) = 0∗. How would you define −α?

6.4 Let α and β be Dedekind cuts and define the “product”: α ·β = {r1r2 :
r1 ∈ α and r2 ∈ β}.

(a) Calculate some “products” of Dedekind cuts using the Dedekind
cuts 0∗, 1∗ and (−1)∗.

(b) Discuss why this definition of “product” is totally unsatisfactory
for defining multiplication in R.

6.5 (a) Show {r ∈ Q : r3 < 2} is a Dedekind cut, but {r ∈ Q : r2 < 2} is
not a Dedekind cut.

(b) Does the Dedekind cut {r ∈ Q : r3 < 2} correspond to a rational
number in R?

(c) Show 0∗ ∪ {r ∈ Q : r ≥ 0 and r2 < 2} is a Dedekind cut. Does it
correspond to a rational number in R?
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This shows |s− t| < ϵ for all ϵ > 0. It follows that |s− t| = 0; hence
s = t.

Exercises

7.1 Write out the first five terms of the following sequences.
(a) sn = 1

3n+1 (b) bn = 3n+1
4n−1

(c) cn = n
3n (d) sin(nπ4 )

7.2 For each sequence in Exercise 7.1, determine whether it converges. If
it converges, give its limit. No proofs are required.

7.3 For each sequence below, determine whether it converges and, if it
converges, give its limit. No proofs are required.
(a) an = n

n+1 (b) bn = n2+3
n2−3

(c) cn = 2−n (d) tn = 1 + 2
n

(e) xn = 73 + (−1)n (f) sn = (2)1/n

(g) yn = n! (h) dn = (−1)nn

(i) (−1)n

n (j) 7n3+8n
2n3−3

(k) 9n2−18
6n+18 (l) sin(nπ2 )

(m) sin(nπ) (n) sin(2nπ3 )

(o) 1
n sinn (p) 2n+1+5

2n−7

(q) 3n

n! (r) (1 + 1
n )

2

(s) 4n2+3
3n2−2 (t) 6n+4

9n2+7

7.4 Give examples of

(a) A sequence (xn) of irrational numbers having a limit limxn

that is a rational number.

(b) A sequence (rn) of rational numbers having a limit lim rn that
is an irrational number.

7.5 Determine the following limits. No proofs are required, but show any
relevant algebra.

(a) lim sn where sn =
√
n2 + 1− n,

(b) lim(
√
n2 + n− n),

(c) lim(
√
4n2 + n− 2n).

Hint for (a): First show sn = 1√
n2+1+n

.
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then we clearly have m > 0 and |sn| ≥ m for all n ∈ N in view of (1).
Thus inf{|sn| : n ∈ N} ≥ m > 0, as desired.

Formal proofs are required in the following exercises.

Exercises

8.1 Prove the following:
(a) lim (−1)n

n = 0 (b) lim 1
n1/3 = 0

(c) lim 2n−1
3n+2 = 2

3 (d) lim n+6
n2−6 = 0

8.2 Determine the limits of the following sequences, and then prove your
claims.
(a) an = n

n2+1 (b) bn = 7n−19
3n+7

(c) cn = 4n+3
7n−5 (d) dn = 2n+4

5n+2

(e) sn = 1
n sinn

8.3 Let (sn) be a sequence of nonnegative real numbers, and suppose
lim sn = 0. Prove lim

√
sn = 0. This will complete the proof for

Example 5.

8.4 Let (tn) be a bounded sequence, i.e., there existsM such that |tn| ≤ M
for all n, and let (sn) be a sequence such that lim sn = 0. Prove
lim(sntn) = 0.

8.5 ⋆1

(a) Consider three sequences (an), (bn) and (sn) such that an ≤
sn ≤ bn for all n and lim an = lim bn = s. Prove lim sn = s.
This is called the “squeeze lemma.”

(b) Suppose (sn) and (tn) are sequences such that |sn| ≤ tn for all
n and lim tn = 0. Prove lim sn = 0.

8.6 Let (sn) be a sequence in R.

(a) Prove lim sn = 0 if and only if lim |sn| = 0.

(b) Observe that if sn = (−1)n, then lim |sn| exists, but lim sn does
not exist.

8.7 Show the following sequences do not converge.
(a) cos(nπ3 ) (b) sn = (−1)nn
(c) sin(nπ3 )

1This exercise is referred to in several places.
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8.8 Prove the following [see Exercise 7.5]:
(a) lim[

√
n2 + 1− n] = 0 (b) lim[

√
n2 + n− n] = 1

2

(c) lim[
√
4n2 + n− 2n] = 1

4

8.9 ⋆2 Let (sn) be a sequence that converges.

(a) Show that if sn ≥ a for all but finitely many n, then lim sn ≥ a.

(b) Show that if sn ≤ b for all but finitely many n, then lim sn ≤ b.

(c) Conclude that if all but finitely many sn belong to [a, b], then
lim sn belongs to [a, b].

8.10 Let (sn) be a convergent sequence, and suppose lim sn > a. Prove
there exists a number N such that n > N implies sn > a.

§9 Limit Theorems for Sequences

In this section we prove some basic results that are probably al-
ready familiar to the reader. First we prove convergent sequences
are bounded. A sequence (sn) of real numbers is said to be bounded
if the set {sn : n ∈ N} is a bounded set, i.e., if there exists a constant
M such that |sn| ≤ M for all n.

9.1 Theorem.
Convergent sequences are bounded.

Proof
Let (sn) be a convergent sequence, and let s = lim sn. Applying
Definition 7.1 with ϵ = 1 we obtain N in N so that

n > N implies |sn − s| < 1.

From the triangle inequality we see n > N implies |sn| < |s| + 1.
Define M = max{|s|+1, |s1|, |s2|, . . . , |sN |}. Then we have |sn| ≤ M
for all n ∈ N, so (sn) is a bounded sequence.

In the proof of Theorem 9.1 we only needed to use property 7.1(1)
for a single value of ϵ. Our choice of ϵ = 1 was quite arbitrary.

2This exercise is referred to in several places.
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ϵ > 0, so there exists N such that n > N implies | 1
sn

− 0| < ϵ = 1
M .

Since sn > 0, we can write

n > N implies 0 <
1

sn
<

1

M

and hence

n > N implies M < sn.

That is, lim sn = +∞ and (2) holds.

Exercises

9.1 Using the limit Theorems 9.2–9.7, prove the following. Justify all steps.
(a) lim n+1

n = 1 (b) lim 3n+7
6n−5 = 1

2

(c) lim 17n5+73n4−18n2+3
23n5+13n3 = 17

23

9.2 Suppose lim xn = 3, lim yn = 7 and all yn are nonzero. Determine the
following limits:
(a) lim(xn + yn) (b) lim 3yn−xn

y2
n

9.3 Suppose lim an = a, lim bn = b, and sn = a3
n+4an

b2n+1 . Prove lim sn =
a3+4a
b2+1 carefully, using the limit theorems.

9.4 Let s1 = 1 and for n ≥ 1 let sn+1 =
√
sn + 1.

(a) List the first four terms of (sn).

(b) It turns out that (sn) converges. Assume this fact and prove
the limit is 1

2 (1 +
√
5).

9.5 Let t1 = 1 and tn+1 = t2n+2
2tn

for n ≥ 1. Assume (tn) converges and find
the limit.

9.6 Let x1 = 1 and xn+1 = 3x2
n for n ≥ 1.

(a) Show if a = lim xn, then a = 1
3 or a = 0.

(b) Does lim xn exist? Explain.

(c) Discuss the apparent contradiction between parts (a) and (b).

9.7 Complete the proof of Theorem 9.7(c), i.e., give the standard argument
needed to show lim sn = 0.
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9.8 Give the following when they exist. Otherwise assert “NOT EXIST.”
(a) limn3 (b) lim(−n3)
(c) lim(−n)n (d) lim(1.01)n

(e) limnn

9.9 Suppose there exists N0 such that sn ≤ tn for all n > N0.

(a) Prove that if lim sn = +∞, then lim tn = +∞.

(b) Prove that if lim tn = −∞, then lim sn = −∞.

(c) Prove that if lim sn and lim tn exist, then lim sn ≤ lim tn.

9.10 (a) Show that if lim sn = +∞ and k > 0, then lim(ksn) = +∞.

(b) Show lim sn = +∞ if and only if lim(−sn) = −∞.

(c) Show that if lim sn = +∞ and k < 0, then lim(ksn) = −∞.

9.11 (a) Show that if lim sn = +∞ and inf{tn : n ∈ N} > −∞, then
lim(sn + tn) = +∞.

(b) Show that if lim sn = +∞ and lim tn > −∞, then lim(sn + tn) =
+∞.

(c) Show that if lim sn = +∞ and if (tn) is a bounded sequence, then
lim(sn + tn) = +∞.

9.12 ⋆3 Assume all sn ̸= 0 and that the limit L = lim | sn+1

sn
| exists.

(a) Show that if L < 1, then lim sn = 0. Hint : Select a so that
L < a < 1 and obtain N so that |sn+1| < a|sn| for n ≥ N .
Then show |sn| < an−N |sN | for n > N .

(b) Show that if L > 1, then lim |sn| = +∞. Hint : Apply (a) to
the sequence tn = 1

|sn| ; see Theorem 9.10.

9.13 Show

lim
n→∞

an =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |a| < 1
1 if a = 1
+∞ if a > 1
does not exist if a ≤ −1.

9.14 Let p > 0. Use Exercise 9.12 to show

lim
n→∞

an

np
=

⎧
⎨

⎩

0 if |a| ≤ 1
+∞ if a > 1
does not exist if a < −1.

Hint: For the a > 1 case, use Exercise 9.12(b).

3This exercise is referred to in several places.
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9.15 Show limn→∞
an

n! = 0 for all a ∈ R.

9.16 Use Theorems 9.9 and 9.10 or Exercises 9.9–9.15 to prove the following:

(a) lim n4+8n
n2+9 = +∞

(b) lim[2
n

n2 + (−1)n] = +∞

(c) lim[3
n

n3 − 3n

n! ] = +∞

9.17 Give a formal proof that limn2 = +∞ using only Definition 9.8.

9.18 (a) Verify 1 + a+ a2 + · · ·+ an = 1−an+1

1−a for a ̸= 1.

(b) Find limn→∞(1 + a+ a2 + · · ·+ an) for |a| < 1.

(c) Calculate limn→∞(1 + 1
3 + 1

9 + 1
27 + · · ·+ 1

3n ).

(d) What is limn→∞(1 + a+ a2 + · · ·+ an) for a ≥ 1?

§10 Monotone Sequences and Cauchy
Sequences

In this section we obtain two theorems [Theorems 10.2 and 10.11]
that will allow us to conclude certain sequences converge without
knowing the limit in advance. These theorems are important because
in practice the limits are not usually known in advance.

10.1 Definition.
A sequence (sn) of real numbers is called an increasing sequence
if sn ≤ sn+1 for all n, and (sn) is called a decreasing sequence if
sn ≥ sn+1 for all n. Note that if (sn) is increasing, then sn ≤ sm
whenever n < m. A sequence that is increasing or decreasing4 will
be called a monotone sequence or a monotonic sequence.

Example 1
The sequences defined by an = 1 − 1

n , bn = n3 and cn =
(1+ 1

n)
n are increasing sequences, although this is not obvious for the

4In the First Edition of this book, increasing and decreasing sequences were

referred to as “nondecreasing” and “nonincreasing” sequences, respectively.
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Proof
The expression “if and only if” indicates that we have two assertions
to verify: (i) convergent sequences are Cauchy sequences, and (ii)
Cauchy sequences are convergent sequences. We already verified (i)
in Lemma 10.9. To check (ii), consider a Cauchy sequence (sn) and
note (sn) is bounded by Lemma 10.10. By Theorem 10.7 we need
only show

lim inf sn = lim sup sn. (1)

Let ϵ > 0. Since (sn) is a Cauchy sequence, there exists N so that

m,n > N implies |sn − sm| < ϵ.

In particular, sn < sm + ϵ for all m,n > N . This shows sm + ϵ is an
upper bound for {sn : n > N}, so vN = sup{sn : n > N} ≤ sm + ϵ
for m > N . This, in turn, shows vN − ϵ is a lower bound for {sm :
m > N}, so vN − ϵ ≤ inf{sm : m > N} = uN . Thus

lim sup sn ≤ vN ≤ uN + ϵ ≤ lim inf sn + ϵ.

Since this holds for all ϵ > 0, we have lim sup sn ≤ lim inf sn. The
opposite inequality always holds, so we have established (1).

The proof of Theorem 10.11 uses Theorem 10.7, and Theo-
rem 10.7 relies implicitly on the Completeness Axiom 4.4, since
without the completeness axiom it is not clear that lim inf sn and
lim sup sn are meaningful. The completeness axiom assures us that
the expressions sup{sn : n > N} and inf{sn : n > N} in Defini-
tion 10.6 are meaningful, and Theorem 10.2 [which itself relies on
the completeness axiom] assures us that the limits in Definition 10.6
also are meaningful.

Exercises on lim sup’s and lim inf’s appear in §§11 and 12.

Exercises

10.1 Which of the following sequences are increasing? decreasing? bounded?
(a) 1

n (b) (−1)n

n2

(c) n5 (d) sin(nπ7 )
(e) (−2)n (f) n

3n



Exercises 65

10.2 Prove Theorem 10.2 for bounded decreasing sequences.

10.3 For a decimal expansion K.d1d2d3d4 · · ·, let (sn) be defined as in
Discussion 10.3. Prove sn < K + 1 for all n ∈ N. Hint : 9

10 + 9
102 +

· · ·+ 9
10n = 1− 1

10n for all n.

10.4 Discuss why Theorems 10.2 and 10.11 would fail if we restricted our
world of numbers to the set Q of rational numbers.

10.5 Prove Theorem 10.4(ii).

10.6 (a) Let (sn) be a sequence such that

|sn+1 − sn| < 2−n for all n ∈ N.

Prove (sn) is a Cauchy sequence and hence a convergent
sequence.

(b) Is the result in (a) true if we only assume |sn+1 − sn| < 1
n for all

n ∈ N?

10.7 Let S be a bounded nonempty subset of R such that supS is not in S.
Prove there is a sequence (sn) of points in S such that lim sn = supS.
See also Exercise 11.11.

10.8 Let (sn) be an increasing sequence of positive numbers and define
σn = 1

n (s1 + s2 + · · ·+ sn). Prove (σn) is an increasing sequence.

10.9 Let s1 = 1 and sn+1 = ( n
n+1 )s

2
n for n ≥ 1.

(a) Find s2, s3 and s4.

(b) Show lim sn exists.

(c) Prove lim sn = 0.

10.10 Let s1 = 1 and sn+1 = 1
3 (sn + 1) for n ≥ 1.

(a) Find s2, s3 and s4.

(b) Use induction to show sn > 1
2 for all n.

(c) Show (sn) is a decreasing sequence.

(d) Show lim sn exists and find lim sn.

10.11 Let t1 = 1 and tn+1 = [1− 1
4n2 ] · tn for n ≥ 1.

(a) Show lim tn exists.

(b) What do you think lim tn is?
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10.12 Let t1 = 1 and tn+1 = [1− 1
(n+1)2 ] · tn for n ≥ 1.

(a) Show lim tn exists.

(b) What do you think lim tn is?

(c) Use induction to show tn = n+1
2n .

(d) Repeat part (b).

§11 Subsequences

11.1 Definition.
Suppose (sn)n∈N is a sequence. A subsequence of this sequence is a
sequence of the form (tk)k∈N where for each k there is a positive
integer nk such that

n1 < n2 < · · · < nk < nk+1 < · · · (1)

and

tk = snk . (2)

Thus (tk) is just a selection of some [possibly all] of the sn’s taken
in order.

Here are some alternative ways to approach this concept. Note
that (1) defines an infinite subset of N, namely {n1, n2, n3, . . .}. Con-
versely, every infinite subset of N can be described by (1). Thus a
subsequence of (sn) is a sequence obtained by selecting, in order, an
infinite subset of the terms.

For a more precise definition, recall we can view the sequence
(sn)n∈N as a function s with domain N; see §7. For the subset
{n1, n2, n3, . . .}, there is a natural function σ [lower case Greek sigma]
given by σ(k) = nk for k ∈ N. The function σ “selects” an infinite
subset of N, in order. The subsequence of s corresponding to σ is
simply the composite function t = s ◦ σ. That is,

tk = t(k) = s ◦ σ(k) = s(σ(k)) = s(nk) = snk for k ∈ N. (3)

Thus a sequence t is a subsequence of a sequence s if and only if
t = s ◦ σ for some increasing function σ mapping N into N. We will
usually suppress the notation σ and often suppress the notation t
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Proof
Suppose t is finite. Consider the interval (t− ϵ, t+ ϵ). Then some tn
is in this interval. Let δ = min{t+ ϵ− tn, tn − t+ ϵ}, so that

(tn − δ, tn + δ) ⊆ (t− ϵ, t+ ϵ).

Since tn is a subsequential limit, the set {n ∈ N : sn ∈ (tn−δ, tn+δ)}
is infinite, so the set {n ∈ N : sn ∈ (t− ϵ, t+ ϵ)} is also infinite. Thus,
by Theorem 11.2(i), t itself is a subsequential limit of (sn).

If t = +∞, then clearly the sequence (sn) is unbounded above,
so a subsequence of (sn) has limit +∞ by Theorem 11.2(ii). Thus
+∞ is also in S. A similar argument applies if t = −∞.

Exercises

11.1 Let an = 3 + 2(−1)n for n ∈ N.

(a) List the first eight terms of the sequence (an).

(b) Give a subsequence that is constant [takes a single value].
Specify the selection function σ.

11.2 Consider the sequences defined as follows:

an = (−1)n, bn =
1

n
, cn = n2, dn =

6n+ 4

7n− 3
.

(a) For each sequence, give an example of a monotone subse-
quence.

(b) For each sequence, give its set of subsequential limits.

(c) For each sequence, give its lim sup and lim inf.

(d) Which of the sequences converges? diverges to +∞? diverges
to −∞?

(e) Which of the sequences is bounded?

11.3 Repeat Exercise 11.2 for the sequences:

sn = cos(
nπ

3
), tn =

3

4n+ 1
, un =

(
−1

2

)n

, vn = (−1)n +
1

n
.

11.4 Repeat Exercise 11.2 for the sequences:

wn = (−2)n, xn = 5(−1)n , yn = 1 + (−1)n, zn = n cos
(nπ

4

)
.
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FIGURE 11.2

11.5 Let (qn) be an enumeration of all the rationals in the interval (0, 1].

(a) Give the set of subsequential limits for (qn).

(b) Give the values of lim sup qn and lim inf qn.

11.6 Show every subsequence of a subsequence of a given sequence is itself
a subsequence of the given sequence. Hint : Define subsequences as
in (3) of Definition 11.1.

11.7 Let (rn) be an enumeration of the set Q of all rational numbers. Show
there exists a subsequence (rnk) such that limk→∞ rnk = +∞.

11.8 ⋆8 Use Definition 10.6 and Exercise 5.4 to prove lim inf sn =
− lim sup(−sn) for every sequence (sn).

11.9 (a) Show the closed interval [a, b] is a closed set.

(b) Is there a sequence (sn) such that (0, 1) is its set of subsequential
limits?

11.10 Let (sn) be the sequence of numbers in Fig. 11.2 listed in the indicated
order.

(a) Find the set S of subsequential limits of (sn).

(b) Determine lim sup sn and lim inf sn.

8This exercise is referred to in several places.
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11.11 Let S be a bounded set. Prove there is an increasing sequence (sn) of
points in S such that lim sn = supS. Compare Exercise 10.7. Note:
If supS is in S, it’s sufficient to define sn = supS for all n.

§12 lim sup’s and lim inf ’s

Let (sn) be any sequence of real numbers, and let S be the set of
subsequential limits of (sn). Recall

lim sup sn = lim
N→∞

sup {sn : n > N} = supS (*)

and

lim inf sn = lim
N→∞

inf {sn : n > N} = inf S. (**)

The first equalities in (*) and (**) are from Definition 10.6, and
the second equalities are proved in Theorem 11.8. This section is de-
signed to increase the students’ familiarity with these concepts. Most
of the material is given in the exercises. We illustrate the techniques
by proving some results that will be needed later in the text.

12.1 Theorem.
If (sn) converges to a positive real number s and (tn) is any sequence,
then

lim sup sntn = s · lim sup tn.

Here we allow the conventions s · (+∞) = +∞ and s · (−∞) = −∞
for s > 0.

Proof
We first show

lim sup sntn ≥ s · lim sup tn. (1)

We have three cases. Let β = lim sup tn.
Case 1. Suppose β is finite.
By Theorem 11.7, there exists a subsequence (tnk) of (tn) such

that limk→∞ tnk = β. We also have limk→∞ snk = s [by Theo-
rem 11.3], so limk→∞ snktnk = sβ. Thus (snktnk) is a subsequence of
(sntn) converging to sβ, and therefore sβ ≤ lim sup sntn. [Recall that
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Exercises

12.1 Let (sn) and (tn) be sequences and suppose there exists N0 such that
sn ≤ tn for all n > N0. Show lim inf sn ≤ lim inf tn and lim sup sn ≤
lim sup tn. Hint : Use Definition 10.6 and Exercise 9.9(c).

12.2 Prove lim sup |sn| = 0 if and only if lim sn = 0.

12.3 Let (sn) and (tn) be the following sequences that repeat in cycles of
four:

(sn) = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, . . .)

(tn) = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, . . .)

Find
(a) lim inf sn + lim inf tn, (b) lim inf(sn + tn),
(c) lim inf sn + lim sup tn, (d) lim sup(sn + tn),
(e) lim sup sn + lim sup tn, (f) lim inf(sntn),
(g) lim sup(sntn)

12.4 Show lim sup(sn+tn) ≤ lim sup sn+lim sup tn for bounded sequences
(sn) and (tn). Hint : First show

sup{sn + tn : n > N} ≤ sup{sn : n > N}+ sup{tn : n > N}.

Then apply Exercise 9.9(c).

12.5 Use Exercises 11.8 and 12.4 to prove

lim inf(sn + tn) ≥ lim inf sn + lim inf tn

for bounded sequences (sn) and (tn).

12.6 Let (sn) be a bounded sequence, and let k be a nonnegative real
number.

(a) Prove lim sup(ksn) = k · lim sup sn.

(b) Do the same for lim inf. Hint : Use Exercise 11.8.

(c) What happens in (a) and (b) if k < 0?

12.7 Prove if lim sup sn = +∞ and k > 0, then lim sup(ksn) = +∞.

12.8 Let (sn) and (tn) be bounded sequences of nonnegative numbers.
Prove lim sup sntn ≤ (lim sup sn)(lim sup tn).

12.9 (a) Prove that if lim sn = +∞ and lim inf tn > 0, then lim sntn =
+∞.

(b) Prove that if lim sup sn = +∞ and lim inf tn > 0, then
lim sup sntn = +∞.
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(c) Observe that Exercise 12.7 is the special case of (b) where tn = k
for all n ∈ N.

12.10 Prove (sn) is bounded if and only if lim sup |sn| < +∞.

12.11 Prove the first inequality in Theorem 12.2.

12.12 Let (sn) be a sequence of nonnegative numbers, and for each n define
σn = 1

n (s1 + s2 + · · ·+ sn).

(a) Show

lim inf sn ≤ lim inf σn ≤ lim sup σn ≤ lim sup sn.

Hint : For the last inequality, show first that M > N implies

sup{σn : n > M} ≤ 1

M
(s1+s2+ · · ·+sN )+sup{sn : n > N}.

(b) Show that if lim sn exists, then lim σn exists and limσn =
lim sn.

(c) Give an example where limσn exists, but lim sn does not exist.

12.13 Let (sn) be a bounded sequence in R. Let A be the set of a ∈ R such
that {n ∈ N : sn < a} is finite, i.e., all but finitely many sn are ≥ a.
Let B be the set of b ∈ R such that {n ∈ N : sn > b} is finite. Prove
supA = lim inf sn and inf B = lim sup sn.

12.14 Calculate (a) lim(n!)1/n, (b) lim 1
n (n!)

1/n.

§13 * Some Topological Concepts in Metric
Spaces

In this book we are restricting our attention to analysis on R. Ac-
cordingly, we have taken full advantage of the order properties of R
and studied such important notions as lim sup’s and lim inf’s. In §3
we briefly introduced a distance function on R. Most of our analy-
sis could have been based on the notion of distance, in which case
it becomes easy and natural to work in a more general setting. For
example, analysis on the k-dimensional Euclidean spaces Rk is im-
portant, but these spaces do not have the useful natural ordering
that R has, unless of course k = 1.
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y ∈ E, we have d(y, x) < δ. Moreover, d(y, xk) < rk
2 for some

k ∈ {1, 2, . . . , n}. Therefore, for this k we have

d(x, xk) ≤ d(x, y) + d(y, xk) < δ +
rk
2

≤ rk
2

+
rk
2

= rk.

Thus, by (2) applied to x = xk, we see that x belongs to U . Hence (1)
holds.

Exercises

13.1 For points x, y in Rk, let

d1(x,y) = max{|xj − yj | : j = 1, 2, . . . , k}

and

d2(x,y) =
k∑

j=1

|xj − yj |.

(a) Show d1 and d2 are metrics for Rk.

(b) Show d1 and d2 are complete metrics on Rk.

13.2 (a) Prove (1) in Lemma 13.3.

(b) Prove the first assertion in Lemma 13.3.

13.3 Let B be the set of all bounded sequences x = (x1, x2, . . .), and define
d(x,y) = sup{|xj − yj | : j = 1, 2, . . .}.

(a) Show d is a metric for B.

(b) Does d∗(x,y) =
∑∞

j=1 |xj − yj | define a metric for B?

13.4 Prove (iii) and (iv) in Discussion 13.7.

13.5 (a) Verify one of DeMorgan’s Laws for sets:
⋂

{S \ U : U ∈ U} = S \
⋃

{U : U ∈ U}.

(b) Show that the intersection of any collection of closed sets is a
closed set.

13.6 Prove Proposition 13.9.

13.7 Show that every open set in R is the disjoint union of a finite or
infinite sequence of open intervals.
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13.8 (a) Verify the assertions in the first paragraph of Example 3.

(b) Verify the assertions in Example 4.

13.9 Find the closures of the following sets:

(a) { 1
n : n ∈ N},

(b) Q, the set of rational numbers,

(c) {r ∈ Q : r2 < 2}.

13.10 Show that the interior of each of the following sets is the empty set.

(a) { 1
n : n ∈ N},

(b) Q, the set of rational numbers,

(c) The Cantor set in Example 5.

13.11 Let E be a subset of Rk. Show that E is compact if and only if every
sequence in E has a subsequence converging to a point in E.

13.12 Let (S, d) be any metric space.

(a) Show that if E is a closed subset of a compact set F , then E
is also compact.

(b) Show that the finite union of compact sets in S is compact.

13.13 Let E be a compact nonempty subset of R. Show supE and inf E
belong to E.

13.14 Let E be a compact nonempty subset of Rk, and let δ = sup{d(x,y) :
x,y ∈ E}. Show E contains points x0, y0 such that d(x0,y0) = δ.

13.15 Let (B, d) be as in Exercise 13.3, and let F consist of all x ∈ B such
that sup{|xj| : j = 1, 2, . . .} ≤ 1.

(a) Show F is closed and bounded. [A set F in a metric space
(S, d) is bounded if there exist s0 ∈ S and r > 0 such that
F ⊆ {s ∈ S : d(s, s0) ≤ r}.]

(b) Show F is not compact. Hint : For each x in F , let U(x) =
{y ∈ B : d(y,x) < 1}, and consider the cover U of F consist-
ing of all U(x). For each n ∈ N, let x(n) be defined so that

x(n)
n = −1 and x(n)

j = 1 for j ̸= n. Show that distinct x(n)

cannot belong to the same member of U .
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Exercises

14.1 Determine which of the following series converge. Justify your
answers.
(a)

∑ n4

2n (b)
∑ 2n

n!

(c)
∑ n2

3n (d)
∑ n!

n4+3

(e)
∑ cos2 n

n2 (f)
∑∞

n=2
1

logn

14.2 Repeat Exercise 14.1 for the following.
(a)

∑ n−1
n2 (b)

∑
(−1)n

(c)
∑ 3n

n3 (d)
∑ n3

3n

(e)
∑ n2

n! (f)
∑ 1

nn

(g)
∑ n

2n

14.3 Repeat Exercise 14.1 for the following.
(a)

∑ 1√
n!

(b)
∑ 2+cosn

3n

(c)
∑ 1

2n+n (d)
∑

(12 )
n(50 + 2

n )

(e)
∑

sin(nπ9 ) (f)
∑ (100)n

n!

14.4 Repeat Exercise 14.1 for the following.
(a)

∑∞
n=2

1
[n+(−1)n]2 (b)

∑
[
√
n+ 1−

√
n]

(c)
∑ n!

nn

14.5 Suppose
∑

an = A and
∑

bn = B where A and B are real numbers.
Use limit theorems from §9 to quickly prove the following.

(a)
∑

(an + bn) = A+B.

(b)
∑

kan = kA for k ∈ R.

(c) Is
∑

anbn = AB a reasonable conjecture? Discuss.

14.6 (a) Prove that if
∑

|an| converges and (bn) is a bounded sequence,
then

∑
anbn converges. Hint : Use Theorem 14.4.

(b) Observe that Corollary 14.7 is a special case of part (a).

14.7 Prove that if
∑

an is a convergent series of nonnegative numbers and
p > 1, then

∑
apn converges.

14.8 Show that if
∑

an and
∑

bn are convergent series of nonnegative
numbers, then

∑√
anbn converges. Hint : Show

√
anbn ≤ an + bn for

all n.

14.9 The convergence of a series does not depend on any finite number of
the terms, though of course the value of the limit does. More precisely,
consider series

∑
an and

∑
bn and suppose the set {n ∈ N : an ̸= bn}
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is finite. Then the series both converge or else they both diverge.
Prove this. Hint : This is almost obvious from Theorem 14.4.

14.10 Find a series
∑

an which diverges by the Root Test but for which
the Ratio Test gives no information. Compare Example 8.

14.11 Let (an) be a sequence of nonzero real numbers such that the sequence
(an+1

an
) of ratios is a constant sequence. Show

∑
an is a geometric

series.

14.12 Let (an)n∈N be a sequence such that lim inf |an| = 0. Prove there is
a subsequence (ank)k∈N such that

∑∞
k=1 ank converges.

14.13 We have seen that it is often a lot harder to find the value of an
infinite sum than to show it exists. Here are some sums that can be
handled.

(a) Calculate
∑∞

n=1(
2
3 )

n and
∑∞

n=1(−
2
3 )

n.

(b) Prove
∑∞

n=1
1

n(n+1) = 1. Hint : Note that
∑n

k=1
1

k(k+1) =
∑n

k=1[
1
k − 1

k+1 ].

(c) Prove
∑∞

n=1
n−1
2n+1 = 1

2 . Hint : Note
k−1
2k+1 = k

2k − k+1
2k+1 .

(d) Use (c) to calculate
∑∞

n=1
n
2n .

14.14 Prove
∑∞

n=1
1
n diverges by comparing with the series

∑∞
n=2 an where

(an) is the sequence

(
1

2
,
1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
,
1

32
,
1

32
, . . .).

§15 Alternating Series and Integral Tests

Sometimes one can check convergence or divergence of series by
comparing the partial sums with familiar integrals. We illustrate.

Example 1
We show

∑ 1
n = +∞.

Consider the picture of the function f(x) = 1
x in Fig. 15.1. For

n ≥ 1 it is evident that
n∑

k=1

1

k
= Sum of the areas of the first n rectangles in Fig. 15.1
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To check the last claim, note that s2k ≤ s ≤ s2k+1, so both
s2k+1−s and s−s2k are clearly bounded by s2k+1−s2k = a2k+1 ≤ a2k.
So, whether n is even or odd, we have |s− sn| ≤ an.

Exercises

15.1 Determine which of the following series converge. Justify your
answers.
(a)

∑ (−1)n

n (b)
∑ (−1)nn!

2n

15.2 Repeat Exercise 15.1 for the following.
(a)

∑
[sin(nπ6 )]n (b)

∑
[sin(nπ7 )]n

15.3 Show
∑∞

n=2
1

n(log n)p converges if and only if p > 1.

15.4 Determine which of the following series converge. Justify your
answers.
(a)

∑∞
n=2

1√
n log n

(b)
∑∞

n=2
logn
n

(c)
∑∞

n=4
1

n(log n)(log logn) (d)
∑∞

n=2
logn
n2

15.5 Why didn’t we use the Comparison Test to prove Theorem 15.1 for
p > 1?

15.6 (a) Give an example of a divergent series
∑

an for which
∑

a2n
converges.

(b) Observe that if
∑

an is a convergent series of nonnegative terms,
then

∑
a2n also converges. See Exercise 14.7.

(c) Give an example of a convergent series
∑

an for which
∑

a2n
diverges.

15.7 (a) Prove if (an) is a decreasing sequence of real numbers and if
∑

an
converges, then limnan = 0. Hint : Consider |aN+1+aN+2+· · ·+
an| for suitable N .

(b) Use (a) to give another proof that
∑ 1

n diverges.

15.8 Formulate and prove a general integral test as advised in 15.2.

§16 * Decimal Expansions of Real Numbers

We begin by recalling the brief discussion of decimals in Discus-
sion 10.3. There we considered a decimal expansion K.d1d2d3 · · ·,
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As noted in Exercise 9.15, the right-hand side converges to 0.
So, for large n, the integer bnIn lies in the interval (0, 1), a
contradiction.

This simplification of Ivan Niven’s famous short proof
(1947) is due to Zhou and Markov [72]. Zhou and Markov use a
similar technique to prove tan r is irrational for nonzero ratio-
nal r and cos r is irrational if r2 is a nonzero rational. Compare
with results in Niven’s book [49, Chap. 2].

(c) It is even more difficult to prove π and e are not algebraic
numbers; see Definition 2.1. These results are proved in Niven’s
book [49, Theorems 2.12 and 9.11].

Example 7
There is a famous number introduced by Euler over 200 years ago
that arises in the study of the gamma function. It is known as Euler’s
constant and is defined by

γ = lim
n→∞

[
n∑

k=1

1

k
− loge n

]

.

Even though

lim
n→∞

n∑

k=1

1

k
= +∞ and lim

n→∞
loge n = +∞,

the limit defining γ exists and is finite [Exercise 16.9]. In fact, γ
is approximately 0.577216. The amazing fact is that no one knows
whether γ is rational or not. Most mathematicians believe γ is irra-
tional. This is because it is “easier” for a number to be irrational,
since repeating decimal expansions are regular. The remark in Ex-
ercise 16.8 hints at another reason it is easier for a number to be
irrational.

Exercises

16.1 (a) Show 2.749 and 2.750 are both decimal expansions for 11
4 .

(b) Which of these expansions arises from the long division process
described in 16.1?
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16.2 Verify the claims in the first paragraph of the proof of Theorem 16.3.

16.3 Suppose
∑

an and
∑

bn are convergent series of nonnegative num-
bers. Show that if an ≤ bn for all n and if an < bn for at least one n,
then

∑
an <

∑
bn.

16.4 Write the following repeating decimals as rationals, i.e., as fractions
of integers.
(a) .2 (b) .02
(c) .02 (d) 3.14
(e) .10 (f) .1492

16.5 Find the decimal expansions of the following rational numbers.
(a) 1/8 (b) 1/16
(c) 2/3 (d) 7/9
(e) 6/11 (f) 22/7

16.6 Find the decimal expansions of 1
7 ,

2
7 ,

3
7 ,

4
7 ,

5
7 and 6

7 . Note the
interesting pattern.

16.7 Is .1234567891011121314151617181920212223242526 · · · rational?

16.8 Let (sn) be a sequence of numbers in (0, 1). Each sn has a decimal

expansion 0.d(n)1 d(n)2 d(n)3 · · ·. For each n, let en = 6 if d(n)n ̸= 6 and

en = 7 if d(n)n = 6. Show .e1e2e3 · · · is the decimal expansion for
some number y in (0, 1) and y ̸= sn for all n. Remark : This shows
the elements of (0, 1) cannot be listed as a sequence. In set-theoretic
parlance, (0, 1) is “uncountable.” Since the set Q∩(0, 1) can be listed
as a sequence, there are a lot of irrational numbers in (0, 1)!

16.9 Let γn = (
∑n

k=1
1
k )− loge n =

∑n
k=1

1
k −

∫ n
1

1
t dt.

(a) Show (γn) is a decreasing sequence. Hint : Look at γn − γn+1.

(b) Show 0 < γn ≤ 1 for all n.

(c) Observe that γ = limn γn exists and is finite.

16.10 In Example 6(b), we showed π2 is irrational. Use this to show π is
irrational. What can you say about

√
π and 3

√
π? π4?


