Problem Sheet 2

Use the properties of an ordered field to prove the results in #1 - #6.

- 1) If $a \leq b$ and $c \leq d$, then $a + c \leq b + d$.
- 2) If $0 \le a \le b$ and $0 \le c \le d$, then $ac \le bd$.
- 3) If x > 0, y > 0, and $x^2 < y^2$, then x < y.
- 4) If 0 < x < y, then $x^n < y^n$ for all $n \in \mathbb{N}$.
- 5) a) If 0 < c < 1, then $c^n < c$ for any integer n > 1.
 - b) If c > 1, then $c^n > c$ for any integer n > 1.
- 6) If $a^2 + b^2 = 0$, then a = 0 and b = 0.
- 7) Let $a, b \in \mathbb{R}$ with $a \ge 0, b \ge 0$. Prove that $\sqrt{ab} \le \frac{a+b}{2}$ using the properties of \mathbb{R} with which you are familiar (without referring to the axioms for an ordered field).
- 8) Prove that if $r \in \mathbb{Q}$, then there is an $n \in \mathbb{N}$ with r < n.