Math 25

Problem Sheet 4

- 1) Show that if $\lim_{n \to \infty} s_n = s$, then $\lim_{n \to \infty} |s_n| = |s|$.
- 2) Recall that a function f is <u>continuous</u> at c iff for every $\epsilon > 0$, there is a $\delta > 0$ such that if $|x c| < \delta$, then $|f(x) f(c)| < \epsilon$.

Prove that if $\lim_{n \to \infty} s_n = L$ and f is continuous at L, then $\lim_{n \to \infty} f(s_n) = f(L)$.

- 3) Prove that if $\lim_{n \to \infty} s_n = s$ and $\lim_{n \to \infty} t_n = t$, then $\lim_{n \to \infty} s_n t_n = st$ by citing the justification for each of the following steps:
 - a) $\lim_{n \to \infty} (s_n s) = 0$ and $\lim_{n \to \infty} (t_n t) = 0$.
 - b) $\lim_{n \to \infty} (s_n s)(t_n t) = 0$, and so $\lim_{n \to \infty} (s_n t_n s t_n s_n t + s t) = 0$.
 - c) $\lim_{n \to \infty} s_n t_n = \lim_{n \to \infty} \left[(s_n t_n st_n s_n t + st) + st_n + s_n t st \right] = \\\lim_{n \to \infty} (s_n t_n st_n s_n t + st) + \lim_{n \to \infty} st_n + \lim_{n \to \infty} s_n t \lim_{n \to \infty} st.$
 - d) $\lim_{n \to \infty} s_n t_n = 0 + st + st st = st.$
- 4) If (s_n) is bounded, show that $\lim_{n \to \infty} \frac{s_n}{n} = 0$.
- 5) Use the Squeeze Theorem to find $\lim_{n \to \infty} (3^n + 2^n)^{\frac{1}{n}}$.
- 6) Prove that $\lim_{n \to \infty} \frac{n^2 + 5}{n+3} = \infty$.