1.) Sketch the graph of \(y = 3x^2 + 2 \) on the interval \([0, 1]\). Consider the area of the region below the graph and above \([0, 1]\). Use the limit definition of a definite integral to find the exact area of the region.

2.) Use the limit definition of a definite integral to evaluate \(\int_{-1}^{2} (x^2 - 2x + 1) \, dx \).

3.) Determine the following indefinite integrals. Do not use u-substitution.

\[
\begin{align*}
\text{a.) } & \int x^2(x+1) \, dx & \text{b.) } & \int (e^x + 2^x) \, dx & \text{c.) } & \int 2x \cos(x^2) \, dx \\
\text{d.) } & \int \frac{x^2 + 1}{x^3} \, dx & \text{e.) } & \int \frac{x^2 + 1}{x + 3} \, dx & \text{f.) } & \int \frac{x^2}{x^3 + 1} \, dx
\end{align*}
\]

4.) Evaluate the following definite integrals. Do not use u-substitution.

\[
\begin{align*}
\text{a.) } & \int_{1}^{9} \frac{1}{x^2} \, dx & \text{b.) } & \int_{0}^{1} 3^{x+1} \, dx & \text{c.) } & \int_{1}^{2} \frac{(x+1)^2}{x} \, dx \\
\text{d.) } & \int_{0}^{5} \sqrt{x+4} \, dx & \text{e.) } & \int_{0}^{\frac{\pi}{4}} \cos(3x) \, dx & \text{f.) } & \int_{-1}^{0} \frac{x^2}{x-1} \, dx \\
\text{g.) } & \int_{0}^{\sqrt{\ln 3}} xe^{x^2} \, dx & \text{h.) } & \int_{0}^{\ln 2} \frac{e^x}{e^x + 1} \, dx & \text{i.) } & \int_{0}^{1} \frac{1}{e^x} \, dx \\
\text{j.) } & \int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx & \text{k.) } & \int_{-1}^{1} 3x^2 \cdot 5x^3 \, dx & \text{l.) } & \int_{0}^{\frac{\pi}{12}} 5 \sec^2 3x \, dx
\end{align*}
\]

5.) Differentiate each:

\[
\text{a.) } F(x) = \int_{-1}^{3x} \sqrt{1 + t^2} \, dt \quad \text{b.) } F(x) = \int_{\tan x}^{\sec x} 5t^2 \, dt
\]

6.) Find an equation of the line perpendicular to the graph of

\[
\text{a.) } F(x) = 3 + \int_{0}^{x} 2e^{t^2} \, dt \quad \text{at } x = 0.
\]

\[
\text{b.) } F(x) = \int_{2x}^{x^2} \sqrt{t^2 + 5} \, dt \quad \text{at } x = 2.
\]

7.) Find the average value of each of the following functions over the given interval. Draw a sketch showing the connection between your answer and the definite integral.

\[
\text{a.) } f(x) = x^3 + 1 \quad \text{on } [-1, 1] \quad \text{b.) } f(x) = 5 + \sqrt{x} \quad \text{on } [0, 4]
\]
8.) If \(\int_{-2}^{1} f(x) \, dx = 3 \) and \(\int_{-2}^{3} f(x) \, dx = -2 \). What is the value of \(\int_{3}^{1} f(x) \, dx \)?

9.) A long and thin corn stalk is 100 inches long. Its density \(x \) inches from its base is given by \(f(x) = 2 - (1/100)x \) ounces per inch. Set up a definite integral and compute the exact weight of the corn stalk.

10.) Consider the region \(R \) enclosed by the graphs of the given functions. Describe each region \(R \) using
 i.) vertical cross-sections.
 ii.) horizontal cross-sections.
 a.) \(y = 2x, x = 4, \) and \(y = 0 \)
 b.) \(y = e^x, x = 0, \) and \(y = e^2 \)
 c.) \(y = 2/x, y = 2x, \) and \(x = 4 \)
 d.) \(y = 2x, y = (1/2)x, \) and \(y = 6 - x \)
 e.) \(y = x^2 \) and \(y = 4x + 5 \)

11.) Find the area of the region bounded by the graphs of the given equations.
 a.) \(y = x, y = 2x, \) and \(x = 2 \)
 b.) \(y = e^x, x = 0, \) and \(y = 2 \)
 c.) \(x = y^2 \) and \(x = 9 \)
 d.) \(y = x, y = 0, y = 2, \) and \(y = (1/2)x - 2 \)

12.) Assume that \(f \) is an odd function and \(\int_{-2}^{1} f(x) \, dx = 3 \). What is the value of \(\int_{-1}^{1} f(x) \, dx \)?

13.) The speed \(s \) (in miles per hour) of a jogger at time \(t \) (in hours) is given by \(s(t) = t + \sqrt{t} \).
 a.) Find the jogger’s average speed between \(t = 0 \) hrs. and \(t = 4 \) hrs.
 b.) Find the total distance traveled by the jogger between \(t = 0 \) hrs. and \(t = 4 \) hrs.

14.) A heavy snow begins to fall at Squaw Valley Ski Resort. If snow falls at time \(t \) hours at the rate of \((1/2)t + 1 \) in./hr. for \(t \geq 0 \), then what is the total accumulated snowfall for \(t = 0 \) to \(t = 8 \) hours?

15.) Find the volume of the solid formed by revolving each region bounded by the given graphs about the given axis.
 a.) \(y = x^2 - 1 \) and \(x - \)axis about the \(x - \)axis
 b.) \(y = \sqrt{x}, y = 0, \) and \(x = 4 \) about the \(x - \)axis
 c.) \(y = \sqrt{x}, y = 0, \) and \(x = 4 \) about the \(y - \)axis
 d.) \(y = 3x, y = 6, \) and \(x = 0 \) about the \(x - \)axis
 e.) \(y = 2x, y = 5 - (1/2)x, \) and \(y = 0 \) about the \(y - \)axis
f.) $y = x^2$ and $y = x + 2$ about the line $y = 4$

g.) $y = x^2$ and $y = x^3$ about the line $y = 2$

h.) $y = x^2$ and $y = x^3$ about the line $y = -1$

i.) $y = x^2$ and $y = x^3$ about the line $x = 3$

j.) $y = x^2$ and $y = x^3$ about the line $x = -2$

16.) Find the length of each graph on the given interval.

a.) $y = x^{3/2}$ on the interval $[0, 4]$

b.) $y = (2/3)(x^2 + 1)^{3/2}$ on the interval $[0, 2]$

c.) $y = \frac{x^4}{4} + \frac{1}{8x^2}$ on the interval $[2, 4]$

d.) $y = (1/2)(e^x + e^{-x})$ on the interval $[0, \ln 2]$

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

15.) Count the total number of squares (including overlapping squares) in the following diagram.