1.) Compute the Midpoint Estimate, M_6, for \(\int_0^1 \frac{1}{x^2 + 1} \, dx \). Compare your answer with the exact value of the integral.

2.) Compute the Trapezoidal Estimate, M_5, for \(\int_{-1}^1 \sqrt{1-x} \, dx \). Compare your answer with the exact value of the integral.

3.) Determine the value of n so that the Trapezoidal Estimate, T_n, estimates the exact value of \(\int_0^{1/2} e^{-2x^2} \, dx \) with absolute error at most 0.00001.

4.) Determine the value of n so that the Midpoint Estimate, T_n, estimates the exact value of \(\int_0^3 \frac{x+1}{x+5} \, dx \) with absolute error at most 0.00001.

5.) Compute the following improper integrals.

 a.) \(\int_0^4 \frac{1}{\sqrt{x}} \, dx \)
 b.) \(\int_1^\infty \frac{3}{x^2} \, dx \)
 c.) \(\int_0^1 \frac{3}{x^2} \, dx \)
 d.) \(\int_{\sqrt{3}}^\infty \frac{1}{1+x^2} \, dx \)
 e.) \(\int_e^\infty \frac{1}{x \ln x} \, dx \)
 f.) \(\int_{-\infty}^0 \frac{e^x}{1+e^{2x}} \, dx \)
 g.) \(\int_1^x \frac{1}{x(x+4)} \, dx \)
 h.) \(\int_0^1 e^{3x} \, dx \)
 i.) \(\int_{-1}^\infty \frac{1}{\sqrt{x}+1} \, dx \)
 j.) \(\int_{-\infty}^{\sqrt{3}} \frac{1}{x^2+9} \, dx \)
 k.) \(\int_{-\infty}^1 e^{x+1} \, dx \)
 l.) \(\int_{x-1}^{7} \frac{7}{x-1} \, dx \)

6.) Consider the region R (in the first quadrant) bounded by the graphs of $y = \frac{1}{x}$, $x = 1$, and $y = 0$.

 a.) Determine if R has finite or infinite area.
 b.) Form a solid by revolving R about the x-axis. Determine if the resulting volume is finite or infinite.

7.) Find the following Taylor polynomials of degree n about $a = 0$, $P_n(x)$, for the indicated functions.

 a.) $f(x) = x^4 + x^3 - x^2 + 3x - 5$, $n = 2$
 b.) $f(x) = x^4 + x^3 - x^2 + 3x - 5$, $n = 4$
 c.) $f(x) = xe^x$, $n = 3$
 d.) $f(x) = \sqrt{x+4}$, $n = 2$
 d.) $f(x) = \ln(x+1)$, $n = 3$

8.) Find the following Taylor polynomials about $a = 0$ for the function $f(x) = \frac{x-2}{x+1}$:
$P_0(x), P_1(x), P_2(x), P_3(x)$. Compare the values of the function and its Taylor polynomials at $x = 0.1$ and $x = 2$. What conclusion do you draw?

9.) It is well known that the integral $\int_0^1 e^{x^2} \, dx$ has no closed-form anti-derivative. Replace $f(x) = e^{x^2}$ with $P_3(x)$, its fourth-degree Taylor Polynomial centered at $x = 0$, to get an estimate for this definite integral. Compare this value with one obtained by a calculator which computes definite integrals and determine the absolute percentage error in your estimate.

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

10.) A nonnegative integer I is a perfect square, triangular (PST) number if I is equal to the square of a nonnegative integer AND is also equal to one-half the product of consecutive nonnegative integers. Find the first four PST numbers.