- 1.) Let S be the amount (pounds) of sugar in a tank at time t (minutes). A solution containing 1/2 pound of sugar per gallon begins flowing into the tank at the rate of 5 gallons per minute and the well-stirred mixture flows out of the tank at the rate of 5 gallons per minute. Initially, the tank holds 200 gallons with 25 pounds of sugar. Set up a differential equation for the rate $\frac{dS}{dt}$ and solve the D.E. for S. How many pounds of sugar are in the tank after 30 minutes?
- 2.) Solve the differential equation for problem 1.) if
- a.) the flow rate IN is 5 gallons per minute and the flow rate OUT is 4 gallons per minute.
- b.) the flow rate IN is 5 gallons per minute and the flow rate OUT is 7 gallons per minute.
- 3.) Solve the following first-order linear differential equations.

a.)
$$y' + y + 3$$
 b.) $y' - y = x + 1$ c.) $y' + \frac{1}{x}y = e^x - 2$

d.)
$$y' + 2xy = \frac{1}{1 + e^{x^2}}$$
 e.) $y' - \frac{1}{x}y = xe^{x^3} + x^2 - 1$

f.)
$$y' + \tan x \cdot y = \sec x - \tan x + 1$$
 g.) $y' + \sec x \cdot y = \sec x - \tan x + 1$

h.)
$$xy' - y = x(\ln x)^3$$
 i.) $xy' + y = x^3 - x^2 + x - 1$ j.) $x^2y' + 2xy = x \ln x$

4.) Use any method to solve the following differential equations. Some can be integrated directly. Some may be first-order linear or separable.

a.)
$$\frac{dy}{dx} = \ln x$$
 b.) $\frac{dy}{dx} = \frac{x^2}{y(1+x^3)}$ c.) $\frac{dy}{dx} = \frac{y^2}{x(1+y^3)}$

d.)
$$\frac{dy}{dx} - x^5 y^2 = 0$$
 e.) $\frac{dy}{dx} = \frac{x + x^3}{1 + x^4}$ f.) $\frac{dy}{dx} - y^2 = y$

g.)
$$\frac{dy}{dx} + 3x^2y = 7x^2$$
 h.) $\frac{dy}{dx} = \frac{x\cos(x^2)}{y^2\sin y}$ i.) $y' + y^3 = y$ and $x = 0, y = 2$

i.)
$$y' + 2y = e^{-2x} \tan^2(7x)$$
 k.) $y' \cdot \cos^2 x + y = 1$ l.) $xy' + 2y = x \cos x$

m.)
$$\tan x \cdot y' = y^2(y+1) \cot x$$
 n.) $\cos(5x^2) \cdot y' = x \cdot \sec^2(3y)$

o.)
$$(e^{2x} - e^x) \cdot e^{2y} \cdot \sin(e^y) \cdot y' = (1 + e^x)e^x$$
 p.) $\cos^3 y \cdot \sin y \cdot dy = \tan^3(10x) \cdot dx$

1

5.) Consider the differential equation $\frac{dy}{dx} + 3x = 2xy$.

- a.) Write it in separable form and solve it.
- b.) Write it in first-order linear form and solve it.
- 6.) Determine the equilibia for each autonomous D.E. and determine their stability using the indicated method.

a.)
$$\frac{dN}{dt} = N^3 - 4N$$
 (Sign Chart Method)

b.)
$$\frac{dN}{dt} = N(3-N)(N-5)$$
 (Derivative, $g'(N)$, Method)

c.)
$$\frac{dN}{dt} = \frac{N^2 - 9N}{N^2 + 9}$$
 (Any Method)

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

7.) A camp cook wants to measure four ounces of vinegar out of a jug, but he has only an unmarked five-ounce container and an unmarked three-ounce container. How can he do it?