1.) Let S be the amount (pounds) of sugar in a tank at time t (minutes). A solution containing 1/2 pound of sugar per gallon begins flowing into the tank at the rate of 5 gallons per minute and the well-stirred mixture flows out of the tank at the rate of 5 gallons per minute. Initially, the tank holds 200 gallons with 25 pounds of sugar. Set up a differential equation for the rate $\frac{dS}{dt}$ and solve the D.E. for S. How many pounds of sugar are in the tank after 30 minutes?

2.) Solve the differential equation for problem 1.) if

 a.) the flow rate IN is 5 gallons per minute and the flow rate OUT is 4 gallons per minute.
 b.) the flow rate IN is 5 gallons per minute and the flow rate OUT is 7 gallons per minute.

3.) Solve the following first-order linear differential equations.

 a.) $y' + y + 3$ b.) $y' - y = x + 1$ c.) $y' + \frac{1}{x} y = e^x - 2$

 d.) $y' + 2xy = \frac{1}{1 + e^{x^2}}$ e.) $y' - \frac{1}{x} y = xe^{x^3} + x^2 - 1$

 f.) $y' + \tan x \cdot y = \sec x - \tan x + 1$ g.) $y' + \sec x \cdot y = \sec x - \tan x + 1$

 h.) $xy' - y = x(\ln x)^3$ i.) $xy' + y = x^3 - x^2 + x - 1$ j.) $x^2 y' + 2xy = x \ln x$

4.) Use any method to solve the following differential equations. Some can be integrated directly. Some may be first-order linear or separable.

 a.) $\frac{dy}{dx} = \ln x$ b.) $\frac{dy}{dx} = \frac{x^2}{y(1 + x^3)}$ c.) $\frac{dy}{dx} = \frac{y^2}{x(1 + y^3)}$

 d.) $\frac{dy}{dx} - x^5 y^2 = 0$ e.) $\frac{dy}{dx} = \frac{x + x^3}{1 + x^4}$ f.) $\frac{dy}{dx} - y^2 = y$

 g.) $\frac{dy}{dx} + 3x^2 y = 7x^2$ h.) $\frac{dy}{dx} = \frac{x \cos(x^2)}{y^2 \sin y}$ i.) $y' + y^3 = y$ and $x = 0$, $y = 2$

 j.) $y' + 2y = e^{-2x} \tan^2(7x)$ k.) $y' \cdot \cos^2 x + y = 1$ l.) $xy' + 2y = x \cos x$

 m.) $\tan x \cdot y' = y^2(y + 1) \cot x$ n.) $\cos(5x^2) \cdot y' = x \cdot \sec^2(3y)$

 o.) $(e^{2x} - e^x) \cdot e^{2y} \cdot \sin(e^y) \cdot y' = (1 + e^x)e^x$ p.) $\cos^3 y \cdot \sin y \cdot dy = \tan^3(10x) \cdot dx$

5.) Consider the differential equation $\frac{dy}{dx} + 3x = 2xy$.

6.) Determine the equilibria for each autonomous D.E. and determine their stability using the indicated method.

 a.) \(\frac{dN}{dt} = N^3 - 4N \) (Sign Chart Method)

 b.) \(\frac{dN}{dt} = N(3 - N)(N - 5) \) (Derivative, \(g'(N) \), Method)

 c.) \(\frac{dN}{dt} = \frac{N^2 - 9N}{N^2 + 9} \) (Any Method)

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

7.) A camp cook wants to measure four ounces of vinegar out of a jug, but he has only an unmarked five-ounce container and an unmarked three-ounce container. How can he do it?