Math 17B
Vogler
Average Value of a Function

DEFINITION: The average value, AVE, of a function f on the inteval [a, b] is that y-value which determines the height of the rectangle (See diagram.) which has area exactly equal to the definite integral
$\int_{a}^{b} f(x) d x$, that is, $\operatorname{AVE}(b-a)=\int_{a}^{b} f(x) d x$, or $\quad \operatorname{AVE}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

EXAMPLE : Find the average value of $f(x)=-1+2 \sqrt{x+1}$ on the interval $[-1,3]$.

$$
A V E=\frac{1}{3-(-1)} \int_{-1}^{3}(-1+2 \sqrt{x+1}) d x
$$

$$
=\left.\frac{1}{4}\left[-x+2 \cdot \frac{2}{3}(x+1)^{3 / 2}\right]\right|_{-1} ^{3}
$$

$$
=\frac{1}{4}\left(-3+\frac{4}{3}(4)^{3 / 2}\right)-\frac{1}{4}\left(1+\frac{4}{3}(0)^{3 / 2}\right)
$$

$$
=\frac{1}{4}\left(-3+\frac{4}{3}(8)\right)-\frac{1}{4}=\frac{20}{12}=\frac{5}{3}
$$

EXAMPLE: Money is withdrawn from an account in such a manner that the amount of money A in the account at time t years is given by the equation $A=800,000 /(t+2)^{3}$ for $t \geq 0$.
a.) What is the initial amount of money in the account?
b.) How much money is in the account after 10 years?
c.) What is the average amount of money in the account from $t=0$ years to $t=10$ years?
d.) When is the average amount of money in the account equal to the average from part c.)?

