

Math 17B
 Vogler
 Inverses and Determinants of Matrices

DEFINITION : Let A be an $n \times n$ matrix. Matrix A^{-1} is the *inverse* of matrix A if

$$AA^{-1} = A^{-1}A = I_n, \text{ the } n \times n \text{ identity matrix.}$$

We say that matrix A is *invertible*.

EXAMPLE 1: Let $A = \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix}$. Consider matrix $\begin{pmatrix} 3 & -7 \\ -2 & 5 \end{pmatrix}$. Then

$$\begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & -7 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 3 & -7 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

so that A is invertible and $A^{-1} = \begin{pmatrix} 3 & -7 \\ -2 & 5 \end{pmatrix}$.

EXAMPLE 2: Let $A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & 1 \end{pmatrix}$. Consider matrix $\begin{pmatrix} -1 & 0 & 1 \\ 5/3 & 1/3 & -4/3 \\ -1/3 & -2/3 & 2/3 \end{pmatrix}$. Then

$$\begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 5/3 & 1/3 & -4/3 \\ -1/3 & -2/3 & 2/3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and

$$\begin{pmatrix} -1 & 0 & 1 \\ 5/3 & 1/3 & -4/3 \\ -1/3 & -2/3 & 2/3 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

so that A is invertible and $A^{-1} = \begin{pmatrix} -1 & 0 & 1 \\ 5/3 & 1/3 & -4/3 \\ -1/3 & -2/3 & 2/3 \end{pmatrix}$.

HOW TO FIND INVERSES : To find A^{-1} for matrix A :

- 1.) Form matrix $[A : I_n]$.
- 2.) Use matrix reduction rules to create matrix $[I_n : B]$.
- 3.) Then $B = A^{-1}$.

NOTE : Not all $n \times n$ matrices have inverses.

EXAMPLE 3: Find the inverse of each matrix.

$$1.) A = \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix} \rightarrow \left(\begin{array}{cc|cc} 5 & 7 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{cc|cc} 1 & 1 & 1 & -2 \\ 2 & 3 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{cc|cc} 1 & 1 & 1 & -2 \\ 0 & 1 & -2 & 5 \end{array} \right) \sim \left(\begin{array}{cc|cc} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{array} \right), \text{ so that } A^{-1} = \begin{pmatrix} 3 & -7 \\ -2 & 5 \end{pmatrix}.$$

$$2.) A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix} \rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 3 & 0 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 3/2 & 0 & 1/2 \\ 0 & 1 & 0 & -3 & 1 & -1 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \end{array} \right), \text{ so that } A^{-1} = \begin{pmatrix} 3/2 & 0 & 1/2 \\ -3 & 1 & -1 \\ 1/2 & 0 & 1/2 \end{pmatrix}.$$

DETERMINANTS for 2 x 2 MATRICES

DEFINITION : Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. The *determinant* of matrix A is the number given by

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

$$\text{EXAMPLE 4: } \det \begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix} = (1)(4) - (-1)(3) = 4 + 3 = 7.$$

$$\text{EXAMPLE 5: } \det \begin{pmatrix} -1 & -2 \\ 4 & 8 \end{pmatrix} = (-1)(8) - (-2)(4) = -8 + 8 = 0.$$

THEOREM : Matrix A is invertible (nonsingular) if and only if $\det A = 0$.

EXAMPLE 6: Matrix A in EXAMPLE 4 is invertible since $\det A \neq 0$. Matrix A in EXAMPLE 5 is NOT invertible since $\det A = 0$.