Math 178
Vogler
Mean Value Theorem and Fundamental Theorem of Calculus

Mean Value Theorem for Integrals : If f is a continuous function on the closed interval
[a,b], then there is at Toast one number ¢, a < ¢ < b, so that
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Proof : Since f is a continuous function on the closed interval {a,b] , by the Maximum- and
Minimum-Value Theorems, f has a maximum vaule M and a minimum value m on [a,b], i.e.,
m < f(z) < M on [a,b] . By property 8.)(fg ;LY?) of gfﬁnite integrals,
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By the Intermediate Value Theorem (p. /19 ) there is at least one number c,a <c<b, 80
that
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First Fundamental Theorem of Calculus (FTC1) : Assume that f is a continuous function
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on the closed interval [a,b] and that F(z) = / f(t)dt . Then F'(z) = f(z) .
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Proof : Consider F(z) = [ f(t)dt as the area under the graph of f above the interval [a, z].

Then F(z +h) is the area under the graph of f above the interval [a, z +h)] and F(z +h)— F(z)
z+h

i the area of the “ thin strip " from z to =+ h, i.e,, F(z+h)-F(z) = / f(t)dt . By the

Mean Value Theorem for integrals there is at least one numberc , 2 < ¢ i<_ z + h , sp that
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The derivative of F(z) can now be computed as
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Second Fundamental Theorem of Calculus (FTC2) : Let f be a continuous function on
the closed interval |a,b]. Assume that F(z) is an antiderivative of f(z), i.e., assume that
F'(z) = f(z). Then
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Proof : Let A(z) = /z f(t)dt . Then A(a) = 0, A(d) = fb f(t)dt, and A'(z) = f(z) by

FTC1. But F'(z) = fa(z) . By Corollary 2 (p.213) to the Mean Value Theorem F(z) =
A(z) + C for any constant C, or

A(x)=F(z)-C .
Then
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