Math 17B

Arc length Example

Fact: One can show that the arc length of a continuous function \(y = f(x) \) from \(x = a \) to \(x = b \) is

\[
ARC = \int_a^b \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx
\]

Ex: Compute the length of the graph of \(y = 1 + \frac{2}{3} x^{3/2} \) on the interval \([0,3]\).

\[
y = 1 + \frac{2}{3} x^{3/2} \quad \Rightarrow \quad y' = x^{1/2}
\]

\[
\Rightarrow \quad ARC = \int_0^3 \sqrt{1 + (y')^2} \, dx = \int_0^3 \sqrt{1 + \left(x^{1/2} \right)^2} \, dx = \int_0^3 \sqrt{1 + x} \, dx
\]

\[
= \left[\int_0^3 (1+x)^{1/2} \, dx \right] = \left[\frac{2}{3} (1+x)^{3/2} \right]_0^3 = \frac{2}{3} \left(\left(y \right)^{3/2} - \left(1 \right)^{3/2} \right)
\]

\[
= \frac{2}{3} \cdot 8 - \frac{2}{3} = \frac{14}{3}
\]

\(
distance = ARC = \frac{14}{3}
\)