Defn Consider the autonomous Differential Equation
\[\frac{dy}{dx} = g(y), \] (*)
and assume that \(\hat{y} = k \) is a constant. If \(g(\hat{y}) = 0 \), then we say that the constant function \(\hat{y} \), as a solution to the D.E. (*), is an equilibrium of (*).

Note: To find equilibria of D.E.s of the form (*), you just solve the equation \(g(y) = 0 \) for \(y \) algebraically.

Defn Let \(\hat{y} = k \) be an equilibrium for \(\frac{dy}{dx} = g(y) \), i.e \(g(\hat{y}) = 0 \).

1) \(\hat{y} \) is stable if solutions to D.E. (*) with nearby initial values \((t=0) \) "converge to" \(\hat{y} \) as \(t \to \infty \).
2) \(\hat{y} \) is unstable if solutions to D.E. with nearby initial values \((t=0) \) "diverge away from" \(\hat{y} \) as \(t \to \infty \).

Classifying Stability (2 Methods)

Let \(\hat{y} = k \) be an equilibrium for \(\frac{dy}{dx} = g(y) \), so \(g(\hat{y}) = 0 \).

I) Graphical Approach (Using Sign charts)

a) \[\begin{array}{c|ccc} + & 0 & - \\ \hline y & \hat{y} & (\text{Stable}) \end{array} \]
b) \[\begin{array}{c|ccc} - & 0 & + \\ \hline y & \hat{y} & (\text{Unstable}) \end{array} \]
c) \[\begin{array}{c|ccc} + & 0 & + \\ \hline y & \hat{y} & (\text{semi-stable}) \end{array} \]
d) \[\begin{array}{c|ccc} - & 0 & - \\ \hline y & \hat{y} & (\text{semi-stable}) \end{array} \]
II) Analytical/Eigenvalue Approach (Using derivative)
Let \(\lambda = g'(\hat{y}) \), which is called the eigenvalue for \(y = \hat{y} \).
Then,
 a) If \(\lambda < 0 \), then \(\hat{y} \) is stable.
 b) If \(\lambda > 0 \), then \(\hat{y} \) is unstable.
 c) If \(\lambda = 0 \) and either \(g''(\hat{y}) > 0 \) or \(g''(\hat{y}) < 0 \),
 then \(\hat{y} \) is semi-stable.

Ex) Find and classify (stable/unstable) the equilibria
 for \(\frac{dN}{dt} = N^2 - 3N - 4 \)
 using a) graphical approach, b) analytical approach

(Solve for roots)
\[
g(N) = N^2 - 3N - 4 = (N - 4)(N + 1) = 0
\]
\[
\Rightarrow \begin{cases} N = 4 \text{ and } N = -1 \end{cases} \text{ are equilibria.}
\]

a) \[
\begin{array}{c c c}
\text{Stable} & \rightarrow & N = -1 \quad \text{Unstable} \\
\text{Stable} & \rightarrow & N = 4 \quad \text{Unstable}
\end{array}
\]

b) \(g'(N) = 2N - 3 \)
 i) \(g'(-1) = 2(-1) - 3 = -5 < 0 \),
 so \(N = -1 \) is \text{Stable}
 ii) \(g'(4) = 2(4) - 3 = 5 > 0 \),
 so \(N = 4 \) is \text{Unstable}